
 doi:10.1152/physiolgenomics.00020.2010 
 41:244-253, 2010. First published Feb 23, 2010;Physiol Genomics

Das, Elissa J. Chesler, Arnold M. Saxton, Michael A. Langston and Brynn H. Voy 
Rachel M. Lynch, Sudhir Naswa, Gary L. Rogers, Jr., Stephen A. Kania, Suchita

 You might find this additional information useful...

for this article can be found at: Supplemental material 
 http://physiolgenomics.physiology.org/cgi/content/full/00020.2010/DC1

80 articles, 28 of which you can access free at: This article cites 
 http://physiolgenomics.physiology.org/cgi/content/full/41/3/244#BIBL

including high-resolution figures, can be found at: Updated information and services 
 http://physiolgenomics.physiology.org/cgi/content/full/41/3/244

 can be found at: Physiological Genomicsabout Additional material and information 
 http://www.the-aps.org/publications/pg

This information is current as of August 16, 2010 . 
  

 http://www.the-aps.org/.the American Physiological Society. ISSN: 1094-8341, ESSN: 1531-2267. Visit our website at 
July, and October by the American Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2010 by
techniques linking genes and pathways to physiology, from prokaryotes to eukaryotes. It is published quarterly in January, April, 

 publishes results of a wide variety of studies from human and from informative model systems withPhysiological Genomics

 on A
ugust 16, 2010 

physiolgenom
ics.physiology.org

D
ow

nloaded from
 

http://physiolgenomics.physiology.org/cgi/content/full/00020.2010/DC1
http://physiolgenomics.physiology.org/cgi/content/full/41/3/244#BIBL
http://physiolgenomics.physiology.org/cgi/content/full/41/3/244
http://www.the-aps.org/publications/pg
http://www.the-aps.org/
http://physiolgenomics.physiology.org


Identifying genetic loci and spleen gene coexpression networks underlying
immunophenotypes in BXD recombinant inbred mice

Rachel M. Lynch,1 Sudhir Naswa,2 Gary L. Rogers, Jr.,2 Stephen A. Kania,3 Suchita Das,1

Elissa J. Chesler,1,4 Arnold M. Saxton,5 Michael A. Langston,2 and Brynn H. Voy1,5

1Systems Genetics Group, Oak Ridge National Laboratory, Oak Ridge; Departments of 2Electrical Engineering and Computer
Science and 3Comparative Medicine, University of Tennessee, Knoxville, Tennessee; 4The Jackson Laboratory, Bar Harbor,
Maine; and 5Department of Animal Science, University of Tennessee, Knoxville, Tennessee

Submitted 12 January 2010; accepted in final form 22 February 2010

Lynch RM, Naswa S, Rogers GL Jr, Kania SA, Das S,
Chesler EJ, Saxton AM, Langston MA, Voy BH. Identifying
genetic loci and spleen gene coexpression networks underlying
immunophenotypes in BXD recombinant inbred mice. Physiol
Genomics 41: 244 –253, 2010. First published February 23, 2010;
doi:10.1152/physiolgenomics.00020.2010.—The immune system
plays a pivotal role in the susceptibility to and progression of a variety
of diseases. Due to a strong genetic basis, heritable differences in
immune function may contribute to differential disease susceptibility
between individuals. Genetic reference populations, such as the BXD
(C57BL/6J � DBA/2J) panel of recombinant inbred (RI) mouse
strains, provide unique models through which to integrate baseline
phenotypes in healthy individuals with heritable risk for disease
because of the ability to combine data collected from these popula-
tions across both multiple studies and time. We performed basic
immunophenotyping (e.g., percentage of circulating B and T lympho-
cytes and CD4� and CD8� T cell subpopulations) in peripheral blood
of healthy mice from 41 BXD RI strains to define the immunophe-
notypic variation in this strain panel and to characterize the genetic
architecture that underlies these traits. Significant QTL models that
explained the majority (50–77%) of phenotypic variance were derived
for each trait and for the T:B cell and CD4�:CD8� ratios. Combining
QTL mapping with spleen gene expression data uncovered two
quantitative trait transcripts, Ptprk and Acp1, as candidates for heri-
table differences in the relative abundance of helper and cytotoxic T
cells. These data will be valuable in extracting genetic correlates of
the immune system in the BXD panel. In addition, they will be a
useful resource for prospective, phenotype-driven model selection to
test hypotheses about differential disease or environmental suscepti-
bility between individuals with baseline differences in the composi-
tion of the immune system.

quantitative trait loci; quantitative trait transcript; eQTL; CD4:CD8
ratio; T:B cell ratio; T lymphocytes; B lymphocytes; Ptprk; Acp1

SYSTEMS GENETICS TAKES a top-down approach to disease sus-
ceptibility by seeking to identify relationships between genetic
variants, intermediate molecular, biochemical and cellular
pathways, and overlying systems-level phenotypes from large-
scale molecular and phenotypic analyses. Typically, putative
interconnections are built through correlational analyses of
diverse data types collected across genetically heterogeneous
populations. These data are often obtained using genetic ref-
erence populations, i.e., populations that are genetically stable
and thus reproducible, allowing data integration across time
and from diverse studies and creating the possibility to uncover

novel relationships among genes, pathways, and diseases. A
number of genetic reference populations exist for mouse, the
largest of which is the BXD (C57BL/6J � DBA/2J) recombi-
nant inbred (RI) strain panel, consisting of 81 extant strains for
which genotype data are publicly available (56). As the depth
of phenotyping for a reference panel like the BXD strain set
increases, so does the ability to interconnect physiological
systems through genetic correlation of phenotypes. Such dis-
coveries can be valuable for determining the molecular basis
for a phenotype, for identifying biomarkers for disease pro-
cesses, and for elucidating interconnections between appar-
ently divergent physiological systems.

The burgeoning evidence that inflammation either initiates
or fuels a wide variety of diseases and pathologies suggests that
immune system components are likely to emerge in many
systems-level networks of disease susceptibility. Disorders not
traditionally linked with the immune system such as obesity
and insulin resistance are now causally linked to inflammatory
processes and mobilization of immune cells (36, 54, 78). While
the abundance of specific lymphocyte subpopulations is altered
by numerous environmental factors such as infection and diet
(5, 73, 86), these traits are also under tight genetic control (2,
25, 41). The involvement of immune processes in myriad
diseases, many of which have a genetic risk, coupled with a
strong genetic basis for immune function, raises the possibility
that genetic variation in immune phenotypes per se may con-
tribute to differential disease susceptibility between individu-
als. Supportive of this concept is a recent report by Dendrou
et al. (28), using the Cambridge BioResource, which is the
human equivalent of a genetic reference population consisting
of �5,000 healthy, genotyped individuals living near Cam-
bridge, UK, who agreed to be studied repeatedly over time.
Dendrou and colleagues linked a specific T cell phenotype -
relative expression of CD25 on the surface of CD4� memory
T cells - with a haplotype previously shown to confer protec-
tion from type I diabetes. Understanding the genetic basis of
specific immunophenotypes (IPs) may therefore be valuable in
understanding susceptibilities and/or progression of diseases,
such as multiple sclerosis and rheumatoid arthritis, which are
characterized by dysregulation or imbalances of distinct im-
mune cell populations (26, 35, 63, 68).

As a first step toward determining the heritable differences
in IPs that may predict outcomes of disease and environmental
exposures, we profiled the abundance of major lymphocyte
subpopulations (CD79�, CD3�, CD4�, and CD8�) in periph-
eral blood of healthy, unperturbed mice from the BXD strain
panel. These data were integrated with existing genotype data
in quantitative trait loci (QTL) mapping to characterize the
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genetic architecture that underlies these traits. They were
further combined with microarray data we collected from
spleens of the same strain panel to highlight potential candidate
genes within significant QTL. Graph algorithms were used to
identify gene expression networks that correlate with and are
potential mediators of IPs, and are thus potential targets for
environmental stimuli that act on the immune system Herein
we present evidence that peripheral IPs are under significant
genetic control in the BXD population and describe genes and
coexpression networks linking genetic variation to immuno-
phenotypic diversity.

METHODS

Animals. C57BL/6J, DBA/2J, and BXD RI stocks from strains
6–42 were obtained from The Jackson Laboratory (Bar Harbor, ME).
BXD RI stocks from strains 43–100 were obtained from Dr. Lu Lu
and Dr. Robert Williams from the University of Tennessee Health
Science Center (UTHSC, Memphis, TN). BXD RI lines were housed
and propagated in the specific pathogen-free (SPF) Russell Vivarium
at Oak Ridge National Laboratory (ORNL). Mice received irradiated
Purina Diet #5083 and chlorinated water ad libitum. The housing
conditions were maintained at 70 � 2°F and 40–60% humidity. A
total of 45 BXD strains were used for spleen expression profiling,
immunophenotyping, or both. This subset of the BXD panel was
chosen from the set of strains maintained at ORNL based on consis-
tent breeding performance and to represent a balanced combination of
the original BXD strains developed at The Jackson Laboratory (71,
72) and the advanced intercross strains developed at the UTHSC (56).
Between 10 and 12 wk of age, mice were killed by cervical dislocation
and either blood was collected for immunophenotyping or the spleens
were harvested for RNA expression profiling. All studies were ap-
proved by the Animal Care and Use Committee at Oak Ridge National
Laboratory.

Immunophenotyping. Flow cytometry was used for the immuno-
phenotyping of male and female mice (average of four mice/sex/
strain) from 41 BXD strains and the parental strains. Blood was
collected by retro-orbital sinus puncture into EDTA tubes, and red
blood cells were lysed using lysis buffer (Sigma-Aldrich, St. Louis,
MO). Following centrifugation, the white blood cell pellet was sus-
pended in buffer (PBS, 0.2% sodium azide, 0.02% heat-inactivated
FBS) and divided into four aliquots for each set of monoclonal
antibodies and a blank negative control. Lymphocytes were stained
with the appropriate antibody or antibodies for 45 min at 4°C. The
negative control was incubated with PBS. One tube was dual-stained
with anti-CD3 (PE, clone 17A2) and anti-CD79b (FITC, clone
HM79b). Another tube was dual-stained with anti-CD4 (PE, clone
H129.19) and anti-CD8a (FITC, clone 53-6.7). The remaining tube
was stained with anti-MHC class II (R-PE, clone NIMR-4). Antibod-
ies were purchased from BD Biosciences (Franklin Lakes, NJ), except
MHC class II-RPE, which was purchased from Southern Biotech
(Birmingham, AL). Following incubation, the samples were centri-
fuged and suspended in PBS. All samples were stored on ice in the
dark until analyzed by flow cytometry. At least 10,000 cells per
sample were analyzed using a Beckman Coulter Epics XL flow
cytometer (Brea, CA). Data were analyzed using EXPO32 ADC
Software (Beckman Coulter). Lymphocytes were gated for analysis
based on forward and side scattering profiles. The IPs measured
included the proportion of circulating T cells (%CD3), B cells (%CD79),
CD4� T cells (%CD4), CD8� T cells (%CD8), as well as the median
expression of major histocompatibility complex II (MHCII median) on
MHCII� lymphocytes (%MHCII).

Identification of immunophenotype QTL. Flow cytometric data
were analyzed for quality based on efficient staining of lymphocytes
and within-individual consistency (e.g., %CD79 approximately equal-
ing %MHCII and sum of %CD4 plus %CD8 approximately equaling

%CD3). Only high-quality immunophenotype data were used for
further analysis, resulting in an average of 3.3 males and 3.2 females
per strain for each IP. T cell to B cell ratio, CD4� to CD8� ratio, and
MHC II median fluorescence were normalized using natural log
transformation (i.e., LN T:B, LN CD4:CD8, LN MHCII).

QTL analysis was performed using genotype data obtained from
GeneNetwork (http://www.genenetwork.org/dbdoc/BXDGeno.html).
This database contains nearly 3,800 informative single-nucleotide
polymorphisms (SNPs) and microsatellite markers originally reported
by Shifman et al. (62) that have been re-aligned with National Center
for Biotechnology Information (NCBI) Build 36. QTL for each IP
were identified using the QTL package (16) in R (http://www.
r-project.org). The multiple imputation method of Sen and Churchill
(60) was used to perform single-QTL genome-wide scans. Genome-
wide significance thresholds were calculated based on 1,000 permu-
tations (24). The cut-off P values for significant and suggestive loci
were P � 0.05 and P � 0.63, respectively (42).The � 1 logarithm of
the odds ratio (LOD) support intervals for each QTL were calculated
using the lodint function in R/QTL. Multiple-QTL modeling was
performed using stepwise linear regression in SAS (SAS Institute,
Cary, NC); a P value of 0.05 was used as the threshold for terms to
remain in the final model.

Expression profiling. Transcriptome profiling was performed in
spleens from an independent set of mice representing 38 BXD strains
(34 of which were immunophenotyped). Total spleen RNA was
isolated from spleens stabilized in RNAlater (Sigma-Aldrich) using
RNeasy Mini Kits (Qiagen, Valencia, CA). RNA concentration and
quality were assessed using Experion RNA StdSens Chips on the
Experion system (Bio-Rad, Hercules, CA). Each BXD sample profiled
consisted of a pool of equal amounts of RNA from either two males
or two females per strain. Expression profiling was performed by
Genome Quebec (Montreal, Canada) using the Mouse WG-6 v1.1
BeadChip on the Illumina platform (San Diego, CA). Six strains were
analyzed per chip. The data were normalized using variance stabiliz-
ing transformation followed by robust spline normalization using the
R/lumi package (30) in Bioconductor (32). Raw and normalized
microarray data have been uploaded to NCBI’s Gene Expression
Omnibus database (http://www.ncbi.nlm.nih.gov/projects/geo; acces-
sion GSE19935) according to MIAME standards (14). Expression
data, along with all IP data, are also available through GeneNetwork
(http://www.genenetwork.org).

Transcriptome map and expression QTL analysis. Of the 34,492
probes on the Illumina arrays, 11,445 transcripts demonstrated vari-
able expression across the panel (coefficient of variation �0.01) and
were used for expression QTL (eQTL) analysis. QTL Reaper (http://
www.genenetwork.org/qtlreaper.html) was used to identify the max-
imum likelihood ratio statistic and a permuted P value (1,000 permu-
tations) for each transcript. QTL Reaper performs Haley-Knott re-
gression for QTL analysis, with an adaptive permutation by transcript
that runs an increased number of permutations for those traits with
significant results to ensure precise P value estimation at the low end
of the P distribution. This method is fast and sufficient for high-
density marker maps as are available for the BXD RI lines. At a P
value threshold of 0.05 over the entire array, 1,881 transcripts were
associated with 686 loci. These eQTLs were classified as cis or trans
according to their genomic positions (located within or beyond 10 Mb
of transcription start site, respectively). Permutation testing was used
to define the maximum number of transcripts likely to be associated
by chance in trans with an eQTL. The 1,881 transcripts were ran-
domly assigned to the 686 significant loci; in 10 million permutations,
the maximum number of transcripts associated in trans with a single
marker was 19. Therefore, we analyzed only the trans-eQTL bands in
which a single marker was associated with 20 or more transcripts.

Statistical modeling and graph algorithms. MGI (http://www.
informatics.jax.org) was used to extract genes located within the � 1
LOD support intervals for the two significant QTLs identified for the
CD4:CD8 immunophenotype. Stepwise linear regression in SAS was
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used to model the CD4:CD8 ratio using the expression of these genes.
Graph algorithms were performed as described previously (76), and
all source codes are available from the authors. Graphs were created
from microarray data by computing all pair-wise Pearson correlations
between expressed transcripts and then filtering the matrix to retain
only statistically significant correlations based on a false discovery
rate of 5% (q-value �0.05, Ref. 67). Maximal cliques were extracted
and anchored cliques identified as previously described (76). A
bipartite graph was created with one partition being the expressed
transcripts and the second partition being a set of five IPs (CD3%, LN
T:B, CD4%, CD8%, LN CD4:CD8). Pearson correlations were com-
puted between each possible pairing of transcript expression and
immunophenotype. Edges in the bipartite graph were filtered to retain
correlations of interest (P � 0.001), and maximal bicliques were then
extracted. Gene ontology (GO) enrichment analysis was performed
using DAVID (37); Benjamini-Hochberg false discovery rate-cor-
rected P values are reported (8).

RESULTS

We began by profiling a panel of IPs in male and female
C57BL/6J and DBA/2J mice to define baseline differences in the
two BXD parental strains. Peripheral blood was analyzed for
proportion of circulating T cells (CD3�), B cells (CD79�), T
helper cells (CD4�), cytotoxic T cells (CD8�), and expression of
major histocompatibility complex II (MHCII) on MHCII� lym-
phocytes using flow cytometry. As shown in Table 1, the parental
strains differ significantly in each of these traits (P � 0.05) except
for CD3� cells (P � 0.184) and CD8� T cells (P � 0.064).
C57BL/6J mice demonstrate a higher percentage of circulating B
cells and CD8� T cells and lower levels of CD4� T cells
compared with DBA/2J mice, which is consistent with previous
reports (21, 52, 74).

The same panel of IPs was profiled across a set of 41 BXD
strains to establish the immunophenotypic diversity in this RI
panel and to model the genetic regulation of each trait.
ANOVA indicated a significant effect of strain on each IP (P �
0.0001), manifested as broad ranges for each of the traits across
the strains. For example, the percentage of T lymphocytes
varies over fivefold (10.3–56.1%), while the percentages of
CD4� and CD8� lymphocytes vary over sixfold (5.6–35.6 and
4.4–26.4%, respectively) (Fig. 1, Supplemental Table S1).1

These ranges relative to those of the parentals illustrate the
genetic complexity of the traits and are within the range of the
phenotypic diversity found in a survey of 32 standard inbred

strains of diverse origin (10, 57). There is also a significant
strain*sex interaction effect for each immunophenotype (P �
0.05), but the effect is much smaller (F statistic � 30%) than
that of the main strain effects. Thus, overall strain effects were
modeled for each immunophenotype.

QTL analysis was performed on each IP as well as the T:B
and CD4:CD8 ratios to identify overlapping and unique loci
associated with each trait. We began with MHC II density as a
reference trait with a defined genetic basis on Chromosome
(Chr) 17, a region in which the BXD parental strains carry
different haplotypes (C57BL/6J carries the H-2b haplotype and
DBA/2J carries the H-2d). Not surprisingly, the genotype at the
H2 locus is the largest factor in explaining median expression
of MHCII on MHCII-expressing lymphocytes (Supplemental
Fig. S1A). The locus itself accounts for 57% of the variance
within the BXD panel (LOD � 7.52, P � 0.001), with the
DBA/2J genotype increasing MHCII expression. A suggestive
secondary locus, Chr 10 @ 114Mb, accounts for an additional
4.5% of the variance. The genetic basis for variation in the
remaining IPs was modeled by first performing single model
genome-wide scans (Supplemental Fig. S1) and then using
suggestive and significant loci from those scans in multilocus
regression to allow for additive and interactive contributions of
multiple loci. A 9 Mb region on Chr 17 spanning the H2 locus was
identified as either suggestive or significant for single model scans
of each trait except for the CD4:CD8 ratio (Fig. 2). The majority
of variance (50.1–77.5%) for each trait is explained by models
incorporating the Chr 17 region in combination with at most
three additional loci (Table 2). T and B cells were measured as
a percentage of total gated lymphocytes and collectively rep-
resent the majority of this population, making these two mea-
surements highly inversely correlated. Accordingly, the QTL
models for each trait are very similar. The relative abundance
between these two cell types (natural log transformed T:B
ratio, or LN T:B) was mapped to identify loci that may be
involved in lymphocyte maturation. The T:B phenotype is
partially explained by interactions between loci on Chrs 3 and
7 and between the Chr 3 locus and H2 locus. In combination
with the additive effects of the H2 locus and an additional
region on Chr 11, this model explains 77.5% of the variation in
the T:B ratio. The only locus important in modeling the T:B
ratio that was not identified for either lymphocyte population
separately (i.e., %CD3 and %CD79) is the locus on Chr 7. The
complete set of significant and suggestive QTLs for each
immunophenotype is depicted in Fig. 2.

Genetic control of T cell abundance was further probed by
mapping loci that contribute to variance in the major T cell
subpopulations, CD4� and CD8� T cells. While QTL analysis
identified the H2 locus as contributing to both %CD4 and
%CD8 (LOD of 4.07 and 3.79, respectively), the remaining
QTLs were unique to the particular T cell subpopulations (Fig.
2). A multilocus model consisting of three loci (on Chrs 10, 12,
and the H2 locus) explains 50.1% of the variance in %CD4,
while a model consisting of a locus on Chr 3 with the H2 locus
explains 56.6% of the variance in %CD8. The ratio of CD4� to
CD8� cells was used in QTL analysis after normalization
using natural log transformation (LN CD4:CD8). Two loci
(Chr 10 @ 31Mb, LOD � 4.24 and Chr 12 @ 31Mb, LOD �
4.28) were identified as significant, independent contributors to
this trait (Supplemental Fig. S1C, Table 2). At both loci, the
DBA/2J allele shifts the ratio in favor of CD4� cells, consistent

1 The online version of this article contains supplemental material.

Table 1. Differences in peripheral blood immunophenotypes
in C57BL/6J and DBA/2J mice

Immunophenotype

C57BL/6J DBA/2J

P ValueMean Mean

% CD3 lymphocytes 32.06 � 1.03 35.60 � 2.21 0.1840
% CD79 lymphocytes 61.40 � 0.98 53.86 � 2.73 0.0352*
LN T:B �0.65 � 0.03 �0.42 � 0.09 0.0392*
% CD4 lymphocytes 23.84 � 1.64 31.56 � 2.41 0.0190*
% CD8 lymphocytes 7.98 � 0.56 6.50 � 0.47 0.0636
LN CD4:CD8 1.10 � 0.10 1.58 � 0.07 0.0012†

% MHCII lymphocytes 61.62 � 1.87 51.22 � 2.64 0.0194*
LN MHCII density 3.53 � 0.16 4.31 � 0.08 0.0003†

Data shown as means � SE of 5–9 mice per strain. P value indicates
significance of strain effect (*P � 0.05, †P � 0.01).
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with the increased abundance of CD4� cells in the DBA/2J
parents (Table 1). These two loci explain nearly 54% of the
variation in the CD4:CD8 ratio. Interestingly, neither region is
implicated in control of either T cell subtype as analyzed
independently, suggesting that these two regions contain ge-
netic variation that contributes to a differentiation process in
which one cell type is retained at the expense of the other.

eQTL profiling has emerged as a means to identify loci
linked directly or indirectly to regulation of gene expression
(15, 29, 38, 59). We performed eQTL mapping using spleen
microarray data to determine whether the QTL regions identi-
fied for IP traits also harbored trans-eQTL bands, loci that are
linked to expression of multiple genes and could thus be
implicated in mechanistic control of the trait(s) through coor-
dinated transcriptional regulation. Spleen was chosen because
it contains abundant levels of both B and T lymphocytes and
contributes to multiple aspects of immune function. Two trans-
bands exceeded the maximal size of 18 transcripts obtained by
permutation testing, consisting of 42 and 30 transcripts located
on Chrs 4 (@ 139.0 Mb) and 12 (@ 15.8 Mb), respectively

(Supplemental Fig. S2). Neither trans-band colocalized with IP
QTLs, nor were the transcripts associated with each trans-band
enriched for functions suggestive of IP regulation. Both bands
did, however, contain an abundance of genes involved in cell
cycle, cell division and DNA replication, which may have
general relevance for heritable regulation of gene expression in
the BXD panel.

We further exploited the microarray data to identify poten-
tial IP candidate genes by determining if expression of one or
more genes within the QTL intervals were correlated with the
overlying trait(s), a strategy that has been used successfully for
other traits (7, 45, 55). We identified quantitative trait tran-
scripts (QTTs), transcripts whose expression is correlated with
a phenotype (55), for the T:B and CD4:CD8 ratios. We focused
on these two traits because they capture relative abundance of
multiple cell types and have significant QTLs. Pearson’s cor-
relation coefficients were calculated between expression levels
of genes residing within the � 1 LOD support intervals for
each QTL and the immunophenotype data. Of the 517 genes
located within these intervals for T:B ratio, 88 showed signif-

Fig. 1. Peripheral blood lymphocyte subpopulations of BXD and parental strains: %CD3 and %CD79 lymphocytes (A), %CD4 and %CD8 lymphocytes (B), and
MHCII density on MHCII� lymphocytes (LN of median MHCII fluorescence, C). Data shown as means � SE of at least 3 males and 3 females per strain.
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icant correlation with the phenotype (P � 0.05). Gene Ontol-
ogy (GO) enrichment analysis indicated that this set of genes
was significantly enriched in processes related to antigen pre-
sentation and processing, as expected from the fact that many
of these genes lie within the H2 locus on Chr 17. This set also
contains a small number of genes (30 genes) that are highly

correlated with T:B but reside on other chromosomes, the
strongest of which are mitofusin 1 (r � 0.626, P � 0.0001) and
phospholipase D1 (r � �0.563, P � 0.0005), both of which
are within the QTL on Chr 3. Mitofusins are mitochondrial
fusion proteins that have recently been linked to the innate
antiviral defense system (82). Phospholipase D1 was shown to
be critical for coordination of inflammatory signaling through
TNF-	 in leukocytes (61).

Similar analysis of the QTL regions for the CD4:CD8
phenotype highlights a smaller set of potential candidate genes
for this trait in the BXD panel. Of the 115 genes located within
the QTL intervals for CD4:CD8 ratio, only 9 (7.8%) were
significantly correlated with the CD4:CD8 phenotype. Of
these, the most highly correlated QTT (r � 0.575; P � 0.0004)
is the transcript for protein tyrosine phosphatase, receptor type,
K (Ptprk), a phosphatase expressed in spleen and other tissues
(81) . Loss of Ptprk due to a spontaneous deletion in Long
Evans Cinnamon (LEC) rats was recently shown to underlie
the deficiency in CD4� T cells in this model (40). Conversely,
our data link increased expression of Ptprk with elevated levels
of CD4� cells. Stepwise linear regression of Ptprk and the
eight other QTL interval genes correlated with the CD4:CD8
ratio was used to estimate the amount of trait variance ex-
plained by expression of these genes. A model containing
Ptprk along with acid phosphatase 1 (Acp1; also known as low
molecular weight protein tyrosine phosphatase) and laminin
B-1 (Lamb1–1) explains 61% of variance in the CD4:CD8
phenotype (P � 0.0001). Like Ptprk, Acp1 is also a strong
candidate gene for heritable variation in CD4:CD8 in the BXD
panel. Polymorphisms in the human ACP1 gene have been
correlated with susceptibility to a number of inflammatory and
autoimmune disorders such as type I diabetes, allergy, and
atherosclerosis, all disorders in which CD4 and/or CD8 cells
are implicated in pathogenesis (9, 18, 49). Lamb1–1 has not
been linked specifically to immune function but is widely
expressed in spleen (46).

Fig. 2. Summary of BXD immunophenotype (IP) quantitative trait loci (QTLs).
The ranges indicate the � 1 logarithm of the odds ratio (LOD) support
intervals for each significant and suggestive QTL, in Mb. IPs are %CD3
lymphocytes (CD3), %CD79 lymphocytes (CD79), LN of CD3:CD79 (T:B),
%CD4 lymphocytes (CD4), %CD8 lymphocytes (CD8), LN of CD4:CD8
(CD4:CD8), and LN of MHCII median expression on MHCII� lymphocytes
(MHC). *Significant QTL (P � 0.05) in single-locus genome-wide scan. IP
labels in black are QTLs that are significant in the final model (P � 0.05); gray
IP labels are not significant in final model.

Table 2. Summary of final QTL models for BXD immunophenotypes

Immunophenotype Final Model Variance Explained, %

QTLs

Marker Chr Position, Mb LOD

%CD3 Loc1*2 � Loc2 58.9 Loc1 rs13477026 3 27 3.72*
Loc2 rs13482963 17 35 5.28*

%CD79 Loc1 � Loc2 � Loc3 67.2 Loc1 rs13477026 3 27 4.17*
Loc2 rs13481119 11 79 2.54
Loc3 rs13482947 17 31 5.41*

LN T:B Loc1*2 � Loc1*4 � Loc3� Loc4 77.5 Loc1 rs13477026 3 27 3.81
Loc2 rs13479274 7 58 2.64
Loc3 rs13481119 11 79 2.61
Loc4 rs13482947 17 31 5.62*

%CD4 Loc1*2 � Loc3 50.1 Loc1 rs3690259 10 114 3.10
Loc2 rs3694890 12 118 2.70
Loc3 rs13482963 17 35 4.07*

%CD8 Loc1*2 � Loc2 56.6 Loc1 rs13477030 3 28 3.82*
Loc2 rs3672987 17 33 3.79*

LN CD4:CD8 Loc1 � Loc2 53.8 Loc1 rs13480570 10 31 4.24*
Loc2 rs6225272 12 31 4.28*

LN MHC median Loc1 � Loc2 61.5 Loc1 rs3690259 10 114 2.81
Loc2 rs13482947 17 31 7.52*

Models were analyzed using significant and suggestive quantitative trait loci (QTLs) from single locus genome-wide scans. Representative single nucleotide
polymorphism markers for each locus in the final models are reported; genome locations are according to NCBI Build 36. LOD, logarithm of odds scores based
on single locus models. *Significant QTLs; all others are suggestive.
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Our group has developed a number of graph algorithms
based on the extraction of cliques and other dense subgraphs to
identify putative gene coexpression networks from large-scale
omics data (6, 11, 22, 43, 76, 84). Here we use the concept of
anchored clique to extract networks of genes coexpressed with
Acp1 and Ptprk that may provide insight into the mechanisms
linking each gene to the CD4:CD8 phenotype. Both genes
encode phosphatases and have been linked through genetic
association studies to a number of inflammatory conditions, but
relatively little is known about the cellular pathways in which
each gene functions. The largest clique containing Acp1 in a
graph thresholded at q-value � 0.05 (with corresponding P �
0.0026) consisted of a total of 500 transcripts. The correlations
of genes within this clique range from |r| � 0.550 to 0.917. GO
enrichment revealed that this Acp1 coexpression network is
highly enriched for genes involved in cell cycle (P � 2.0e-22,
Benjamini � 1.1e-18), cell division (P � 1.6e-20, Benjamini �
4.2e-17), and DNA replication (P � 2.4e-18, Benjamini �
3.2e-15). To insure that this high degree of GO enrichment was
not somehow an artifact of our specific dataset, we identified
genetic correlates of Acp1 expression in an independent spleen
array dataset from 24 BXD strains within GeneNetwork (27).
As with our data, Acp1 expression was highly significantly
correlated with genes involved in cell cycle and related pro-
cesses (e.g., GO term M phase, Benjamini � 1.13e-18). The
cell cycle enrichment in our Acp1 anchored clique is also
represented in the KEGG pathway for cell cycle control (P �
3.3e-12, Benjamini � 6.5e-10). Interestingly, of the 20 genes
included in the KEGG pathway and coexpressed with Acp1, 18
are regulated by phosphorylation. These results suggest that
abundance of the Acp1 transcript per se may regulate phos-
phorylation status of cell cycle targets, either directly or indi-
rectly, in the spleen. Similar analysis was performed for the
maximal anchored clique of 135 genes containing Ptprk, but
significant GO enrichment was not observed.

One of our long-term interests is to identify gene coexpres-
sion networks linked to immune function in healthy individuals
and to determine how these networks are perturbed by envi-
ronmental factors that promote inflammation and/or alter im-
mune function. To visualize the intersection between gene
networks associated with IPs, we used a biclique algorithm to
identify the largest set of transcripts in which each member is
significantly correlated with each other and one or more phe-
notypes. Pearson correlations were computed between each
transcript and five immunophenotype measurements (%CD4,
%CD3, LN T:B, %CD8, and LN CD4:CD8), and the matrix
was thresholded to retain only those correlations most likely to
symbolize true relationships (P � 0.001), leaving a total of 218
transcripts that are significantly correlated with one or more
IPs. The relationship between gene expression and IPs are
represented in Fig. 3, and as expected significant overlap exists
between the sets of genes associated with each trait. The
members of each biclique are listed in Supplemental Table S2.
For example, Notch4 is correlated with %CD3, LN T:B,
%CD4, and %CD8. Notch4 is part of the highly conserved
Notch family which play important roles in lymphocyte lineage
commitment (70) and other cell-fate decisions (3). Specifically,
there is evidence to support the role of Notch4 in the differen-
tiation and expansion of hematopoietic stem cells and in
lymphomogenesis (75, 83). These data provide a starting point

from which to test the impact of specific environmental vari-
ables on networks of genes linked to IPs of interest.

DISCUSSION

Systems genetics enables the detection of QTLs and the
identification of putative candidate genes for further testing and
validation. In parallel, it produces phenomic data that can be
mined in the context of the system by integrating it with all of
the other multiscale and diverse data types obtained from the
same population. At a total of 79 strains, the BXD RI strain
panel is the largest inbred mouse RI panel, and one for which
an abundance of genomic resources now exist (56). We char-
acterized the range of variation and the genetic architecture of
IPs in the BXD RI panel to produce a baseline profile of the
immune system that can be integrated into systems genetics
studies with this population. These data are relevant for genetic
susceptibility to the plethora of environmental factors and
disorders that invoke the immune system, e.g., ionizing radia-
tion exposure and diet-induced obesity.

We found that genetic models explain the majority of vari-
ation in each of the IPs, which is consistent with reports from
humans and other species that lymphocyte subpopulations in
healthy individuals are under strong genetic control. Three of
the IPs (proportions of B, CD4� and CD8� lymphocytes in
peripheral blood) were previously profiled in 22 of the same
BXD lines included in our study (21). Two of the three IPs are
significantly correlated with our data (%B lymphocytes, r2 �
0.530, P � 0.010; %CD8 lymphocytes, r2 � 0.437, P � 0.041)
despite the passage of several years between studies and the
use of independent BXD breeding colonies and institutions,
highlighting the genetic stability of these phenotypes. The
QTLs identified for these three traits differ between the two
studies, likely because the Chen and Harrison (21) study relied
on 35 BXD strains from the original BXD panel (strains 1–42)

Fig. 3. Bipartite graph demonstrating the connectivity of 5 IPs and transcript
expression. IPs are listed in the center of the graph and are symbolized by
hexagons. The numbers of transcripts correlated (P � 0.001) with the IP(s) are
depicted in the circles. The transcript sets symbolized by white circles create
a maximal biclique with a single IP, while the transcript sets that create a
maximal biclique with �1 IP are symbolized with gray circles. The transcripts
included in each biclique are listed in Table S2.
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and a limited number of genetic markers, while ours was
balanced between the original BXD set and the advanced
recombinant inbred set produced by Peirce et al. (56). Recent
polymorphisms in this population (62) have been shown to
influence the location and direction of QTL effects in these
populations (58). In addition, a significant increase in the
number of informative genetic markers are now available for
the BXD panel and were used herein, which also may contrib-
ute to the discrepancy in QTL positions. Our reported QTL
intervals (and those for many other traits mapped using the
BXD panel) will likely be further refined with upcoming
availability of genotype data across a panel of 580,000 SNPs,
data that will soon be available through the GeneNetwork
website (R. W. Williams, personal communication).

Identifying QTLs is relatively straightforward and rapid
when using genetic reference panels such as BXD for which
genotype data are readily available; cloning the causative
polymorphism and confirming its role in phenotypic determi-
nation is a much more elusive target and one that we have not
attempted. However, by combining QTL mapping with gene
expression data, we have winnowed the list of potential can-
didate genes for traits of interest to a manageable number for
further study. This approach produced two particularly com-
pelling candidate genes - Ptprk and Acp1 - within the two
significant QTLs associated with CD4:CD8, a trait used clin-
ically as a marker for the prognosis of human immunodefi-
ciency virus (HIV) (47), rheumatoid arthritis (31), and other
diseases. Ptprk encodes a receptor-type protein-tyrosine phos-
phatase with no specific properties that link it to lymphocyte
development. However, a potential role for Ptprk in CD4� T
cell development was serendipitously uncovered in studies of
the LEC rat, a model of Wilson’s disease (due to a mutation in
the copper transporting ATPase gene) that also had been noted
to be deficient in CD4� T cells (1). Recently, two groups (4,
40) used linkage analysis to identify a deletion containing
Ptprk in LEC rats and confirmed that loss of Ptprk is respon-
sible for defective CD4� T cell development. Clinically, de-
letions of the chromosomal region containing PTPRK (chro-
mosome 6q22–23) are frequently present in high-grade non-
Hodgkin’s lymphoma (53, 85), and loss of this region is also
predictive of poor prognosis in CNS lymphoma (20), implicat-
ing this phosphatase in oncogenesis of the immune system. We
used coexpression analysis in an attempt to gain insight into
Ptprk function in spleen, based on the concept of genetic
correlation. However, many of the transcripts with which Ptprk
is most tightly coexpressed are un- or poorly annotated, and no
specific functions showed statistical enrichment. On the other
hand, Acp1, the second candidate gene of interest for the
CD4:CD8 phenotype, is part of a large clique of 500 transcripts
that is highly enriched in functions related to cell cycle. Acp1,
also known as low molecular weight protein tyrosine phospha-
tase, regulates phosphorylation status of a number of prolifer-
ative signaling molecules (64) and is upregulated in several
types of cancers (48, 50). Genetic screens in humans link
polymorphisms in or near the ACP1 locus to a variety of
inflammatory diseases including allergy, asthma, and obesity
(12), and Acp1 is involved in activation, adhesion, and differ-
entiation of T cells (13, 33). The QTLs containing Acp1 and
Ptprk reside on separate chromosomes that showed significant
independent and additive linkage with the CD4:CD8 pheno-
type, suggesting that genes within each locus may interact to

affect CD4:CD8 ratio. At the molecular level Ptprk positively
regulates the protein tyrosine kinase Src (77), which in turn
phosphorylates and activates Acp1 (17, 69). Whether these
events occur in the same cell type, and in one relevant to T cell
development, is unknown but is worthy of further experimen-
tation. It is worth noting that both Acp1 and Ptprk have been
linked through genetic screens to colon cancer susceptibility
(65, 66). Germane to our overarching interest in radiation
sensitivity is the fact that both Acp1 and Ptprk have been
shown to be altered by radiation exposure (34, 79).

Although Ptprk and Acp1 emerge as attractive candidates for
the CD4:CD8 phenotype, a potential limitation of our study is
that the tissue (spleen) used to highlight these QTTs is not the
site of T lymphocyte lineage commitment and selection, pro-
cesses thought to primarily occur within the thymus (19).
However, it has been suggested that there are compensatory
adjustments that occur within peripheral immune organs (i.e.,
spleen and lymph nodes) and alters the T cell peripheral
population (52). Therefore, it is possible that the expression
levels of Ptprk and Acp1 in the thymus and spleen are regulated
through similar mechanisms, or that the genetic polymor-
phisms that cause variation between strains exert similar ef-
fects in both tissues. If so, the relationship between trait values
and expression levels would be predicted, even though the
specific tissue profiled is not the primary tissue involved in the
process of interest. Alternatively, the causative polymorphisms
within the QTL intervals, whether in Ptprk and Acp1 or other
genes or regulatory elements, may act on processes that occur
in the periphery, such as T cell proliferation. However, the
mice used in this study were not exposed to any known
immune challenges and were maintained in an SPF facility,
and we would expect peripheral proliferation of T cells to be
minimal in these animals. It is also possible that, despite
convergent evidence to support their contribution to CD4:CD8,
the causative polymorphism for variation in this trait do not act
through either Acp1 or Ptprk.

Genetic correlations between IPs in the BXD panel and
disease susceptibility would be enriched by more detailed
characterization of T cell subpopulations beyond the classifi-
cation as either Th (CD4�) or Tc (CD8�). For example,
additional surface markers could be used to further classify
CD4� cells as Th1, Th2, Th17, regulatory T (Treg), follicular
helper T (Tfh), 
� T cells, etc. Each of these cell types play
important roles in host defense and autoimmune diseases, and
understanding the genetic basis of T cell subpopulation distribu-
tions would be invaluable in elucidating susceptibilities to T
cell-mediated disorders, such as rheumatoid arthritis (39, 44, 80).

One of the advantages of using BXD strains as a reference
population is the wealth of genotypic, phenotypic, and gene
expression information available for the panel, much of which
is freely available through the online database GeneNetwork.
For example, we transiently uploaded our data into GeneNet-
work to scan for genetic correlation between our IPs and other
traits measured on the BXD population. This ad hoc analysis
revealed an association between the baseline T:B ratio profiled
in our study and outcomes of Chlamydia psittaci exposure as
measured by Miyairi and colleagues (51). Among BXD strains
that persisted 30 days postinfection, both spleen weight and
pathogen load in spleen (GeneNetwork records 11025 and
11026) are significantly correlated (r � �0.811, P � 0.001,
and r � �0.728, P � 0.003, respectively) with the T:B
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phenotype. The opportunity for such integrative analyses pro-
vided by the use of genetic reference populations such as the
BXD panel highlights the strengths of systems genetics,
namely the ability to assimilate genetic susceptibility to disease
or the environment in the context of the healthy state through
the stable genetic basis of the population. As the BXD strain
continues to be phenotyped, the ability to connect seemingly
disparate phenotypes grows proportionally. The Collaborative
Cross, an idealized genetic reference population, should also be
widely available within the next few years for expanded
systems genetics studies (23).

In summary, we have characterized the genetic architecture
of a set of basic but informative IPs in the BXD panel. We have
uncovered potential candidate genes that contribute to genetic
variation in the relative abundance of helper and cytotoxic T
cells, and follow-on studies to test the roles of both Ptprk and
Acp1 can now be initiated. Beyond the classical follow-ups to
QTL mapping, these data can be a useful resource in choosing
BXD strains with a particular baseline immunoprofile for the
study of a particular disease susceptibility or progression. For
example, we have gene expression data from spleen suggesting
that low-dose radiation exposure differentially impacts T cell
subpopulations in a way that depends on genetic background
(R. L. Lynch, S. Das, A. M. Saxton, M. A. Langston, B. H. Voy,
unpublished data). We can now use these BXD data to select
strain subsets based on differences in T cell subpopulations and
prospectively test if heritable differences in IPs alter radiation
effects on immune function.
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