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The biological mechanisms that link genetic variation and its phenotypic outcome stand as a central puzzle in
biology. Geneticists have usually approached this problem by trying to identify genetic variants that underlie
the trait in question. Ten years ago, microarray technology opened a second front by making it possible to
compare expression levels for most active genes under a variety of genetic and environmental conditions. A
typical study reveals up- or down-regulation of genes or pathways associated with a phenotype (case/
control) or condition (treated/untreated). In the past few years, a number of groups have started to combine
gene expression studies with genetic linkage analysis, leading to a new synergy between these approaches.
In this strategy, expression levels are treated as quantitative phenotypes and genetic variants that influence
gene expression are sought. Several studies have shown that mRNA levels for many genes are heritable, thus
amenable to genetic analysis. Quantitative trait loci mapping efforts have led to the initial characterization of
genetic regulation in ‘cis’ probably because of variants in the gene’s own regulatory regions, as well as in
‘trans’, i.e. by loci elsewhere in the genome. The existence of some ‘master regulators’ that each affects
expression levels of hundreds of genes is an important finding that will surely enrich our understanding
of regulatory networks. Although this novel field is still developing, understanding the genetic basis of
molecular phenotypes such as gene expression is expected to shed light on the intermediate processes
that connect genotype to cellular and organismal traits and represents a critical step towards true systems
biology.

INTRODUCTION

Most common human diseases, including cancer, heart disease
and schizophrenia, have complex etiologies, involving the
action of many genes, as well as dynamic gene–environment
interactions. To elucidate the mechanisms underlying disease
susceptibility and progression and to improve diagnosis and
treatment, an important strategy is to use genetic methods to
identify the causative DNA variants and use this knowledge
as the first step towards the eventual unraveling of the
complex interplay between genes and environment. A
second, more recent approach, made possible by the emer-
gence of microarray technology since the early 1990s, is to
analyze gene expression patterns globally in tissues from
healthy and diseased individuals and use the steady-state
mRNA levels to infer the maladaptive regulatory changes

accompanying the disease. Until recently, genetic and gene
expression studies were largely separate endeavors, involving
different study designs, biological materials and analysis tools.
Occasionally, a study searching for the overlap between genes
expressed in a relevant pathway and the chromosomal region
identified by linkage could pinpoint a clear candidate that
turned out to be the correct gene (1). A systematic integration
of genetic association and linkage results with gene expression
results remains, however, a significant challenge.

In the past few years, genetic and gene expression
approaches have been brought together, in what has been
coined ‘genetical genomics’ (2), to study the genetic basis
of gene expression (Fig. 1). The importance of understanding
the genetic basis of gene expression, and by extension of
biological regulation, is predicated on the widely held view
that genetic contribution to phenotypic diversity is just as
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likely to come from variations in amounts of proteins as from
functional changes in them. These studies (3–11) (Table 1)
follow a strategy outlined by Jansen and Nap (2): both
mRNA data and DNA marker data are collected in tissue
samples from genetically related individuals; the mRNA
level of each of thousands of genes is treated as a separate
quantitative phenotype, just like traits such as blood pressure
or body weight. The chromosomal regions that affect
steady-state levels of each transcript are then determined by
conventional quantitative trait loci (QTLs) analysis. In the
simplest terms, a significant QTL means that different geno-
types at a polymorphic marker locus are associated with
different trait values, in this case, expression levels. The
power of this genomic strategy comes from our current
ability to gather both genotype and gene expression data accu-
rately, efficiently and on a global scale, thus enabling systems-
level data mining. Although in the past, it took a significant
amount of effort to show that a certain quantitative trait is
variable, heritable and, furthermore, can be mapped to
QTLs, with the genomic approach, each study instantly
reveals hundreds of highly heritable molecular traits as well
as hundreds of significant QTLs for the segregating population
under study. These QTLs can lead to positional or functional
candidates for downstream analysis and, especially when
combined with QTL analysis of higher-level traits, may
have important implication for both basic biology and
medical research.

This strategy has been successfully applied to yeast
(3,11,12), fly (13,14), mouse, plant and human (10). Most of
these earlier studies have been reviewed elsewhere (15,16).
Here, we will focus on the latest development in gene
expression QTL mapping in human and rodent systems.

Table 1 summarizes the results of the two major experimen-
tal approaches discussed here. Morley et al. (9) and Monks
et al. (8) both measured baseline levels of gene expression
in lymphoblastoid cell lines (LCLs) from members of 14
and 15 CEPH (Center d’Etude du Polymorphisme Humain)
families (17), respectively. Although differing in important
details such as microarray platform, genetic markers, specific
families and analysis used, both studies focussed on genes that

showed high individual variation in expression and carried out
genome-wide QTL analysis using genotype data that were
already in the public domain, i.e. from the SNP Consortium
(9) and the CEPH genotype database (8). Two more recent
studies, by Chesler et al. (5) and Bystrykh et al. (4), analyzed
forebrain and the hematopoietic stem cells (HSCs), respect-
ively, in the same �30 recombinant inbred (RI) strains of
mouse. Figure 2 illustrates how these isogenic lines are
formed by mating two genetically divergent parental strains,
in this case the DBA/2 (D) and C57BL/6 (B) strains, followed
by repeated sibling intercross of F2 progenies to produce
individual inbred lines, each of which represents a distinct
mosaic of the two founder genomes. The power of these
strains, in contrast to standard F2 offspring, is that the recom-
bination events are fixed, and recombinant animals of the
same genotype are essentially unlimited in number. Thus, in
a panel of RI lines, one can replicate experiments or character-
ize the consequences of perturbing environmental conditions
on a diverse yet controlled genetic background (18),
(Fig. 2). The fifth study, by Hubner et al. (7), applied the
same approach to the fat and kidney tissues in the BXH/
HXB rat RI strains, which were most often used as a model
system for human hypertension and other metabolic
syndromes.

Figure 1. The ‘genetical genomics’ brings together the traditional genetic
analysis and the gene expression studies by directly characterizing the
genetic influence of gene expression.

Figure 2. The construction of RI strains. Mating of two founder strains is
followed by repeated sibling mating to produce many inbred lines, each of
which represents a distinct genomic mosaic of the two parental genomes.
One chromosome is depicted. Reprinted from Broman (33), with permission
from Nature Publishing Group (http://www.nature.com).
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Table 1. Five recent genetic studies of genes expression in humans and rodents

Studies Samples Gene expression data Genetic data Heritability (h2) QTLa Cis-loci versus
trans-loci

‘Master regulators’ Other key findings Ref

Morley et al. LCLs from 14
CEPH families

Affymetrix arrays,
focussing on 3554
most variable
transcripts

�2500 SNP
markers

Did not report 142 at point-wise
P, 4.3E-7
(genome-wide
P, 0.001); 984 at
point-wise
P, 3.7E-5

Among the top QTLs,
27 cis-loci,
110 trans-loci,
five multiple QTLs

Two ‘hotspots’, one
on chr.14 (seven
QTLs), another on
chr. 20 (six QTLs)

Experimentally
confirmed
several cis-
QTLs as allelic
differences in
gene expression

(9)

Monks et al. LCLs from
15 CEPH
families

Agilent 25K
oligonucleotide
arrays, focussing on
2430 most variable
transcripts

346 autosomal
markers

762 were heritable at
False discovery
rate , 0.05, for a
median h2 of 0.34

33 at P , 5E-6; 50
at P, 5E-5; 132
at P, 5E-4
(all point-wise)

13 of the top 33, and
25 of the top 132
are cis-loci. cis-loci
tend to show more
significant linkage

Lack of evidence for
‘hotspots’

(8)

Chesler et al. Forebrain,
35 BXD RI
strains of
mouse

Affymetrix U74Av2
arrays, analyzed all
transcripts on the
array

779 non-
redundant
markers

Median of 11%
for all transcripts,
608 with
h2 . 33%

101 at h2 . 0.33 and
genome-wide
P, 0.05
(FDR , 0.25)

83 of top 88 loci are
cis-loci

Seven trans- ‘bands’,
on chr. 1,2,6,10,
11,14,19, with up to
1650 transcripts

controlled by one
band

Examples of
association
between gene
expression
and behavioral
traits, epistatic
interaction,
tissue specificity
and gene
networks

(5)

Bystrykh et al. HSCs, 30
BXD RI
strains

Same as above Same as above Did not report 1219 at genome-
wide P, 0.05

At P, 0.05,
162 cis-loci, 1057
trans-loci. cis-loci
tend to show more
significant linkage

17 different loci
controlling 10–272
transcripts

Identified 297
QTLs that were
common
between brain
and HSCs, 222
were trans-
QTLs, 75
were cis-b

(4)

Hubner et al. Fat and kidney
tissues, 30
BXH/HXB
rat RI strains

Affymetrix RAE
230A arrays,
all transcripts

1011 autosomal
markers

Did not report 2118 (fat) and
2490 (kidney) at
genome-wide
P, 0.05

60–65% were
trans-loci at
P, 0.05, yet
80–100% were
cis-loci at
P, 0.0001

In fat, a chr.17 QTL
for 42 transcripts;
in kidney a chr.3
QTL for 28
transcripts

15% QTLs,
mostly cis-
QTLs, were
common in fat
and kidney
tissues

(7)

aThe reported statistical significance levels (P-values and false discovery rates) are not always suitable for direct comparisons across studies, which are often different in sample size, RNA
pooling, numbers of technical replication, marker density or methods of statistical analysis. Most studies used permutation to derive genome-wide P-values across all genetic loci and false
discovery rate to control for testing 103–104 transcripts.
bAlthough there were three times more trans-loci than cis-loci among the common QTLs between brain and HSC, the trans-QTLs in HSC were six times more than cis-QTLs.
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HERITABILITY OF GENE EXPRESSION LEVELS

A prerequisite for any genetic study is to demonstrate that the
trait in question is influenced by inherited factors. Several
earlier studies have shown that transcript levels for many
genes are indeed heritable (3,6,10). For newer examples,
Chesler et al. (5) reported, in forebrain of BXD RI mice, a
median heritability of 11% across all transcripts on the micro-
array, with 608 transcripts having .33% variance accounted
for by strain. Monks et al. (8) focussed on a subset of 2430
genes, which were differentially expressed in LCLs from 15
human families, and found expression in 762 genes (31%) to
be significantly heritable (at a false discovery rate
P , 0.05), for a median heritability of 34%. These estimates
are similar to those reported in yeast, where a median herit-
ability of 27% was reported among a set of 1038 transcripts
with strongest detected QTLs (12). Although the exact herit-
ability estimates depend on factors such as sample size,
tissue type, statistical model, amount of genetic diversity
and environmental variabilities, these studies have revealed
that hundreds to thousands of transcripts were clearly influ-
enced by inherited factors and collectively confirmed that
variations in mRNA levels are heritable traits amenable for
genetic analysis, and therefore can serve as possible ‘inter-
mediate phenotypes’ between genetic risk factors and
grossly observable traits or diseases.

MAPPING QTLS: CIS- OR TRANS-REGULATION?

The genetic analysis of gene expression naturally leads to the
classification of QTLs into cis-acting and trans-acting classes
based on the relative genomic locations of the transcript and
its QTL. This has provided a glimpse into some basic prin-
ciples regarding the relative contributions of cis-acting
versus trans-acting loci, summarized in Table 1. In human
LCLs, Morley et al. (9) found significantly more trans-
acting QTLs (N ¼ 110) than cis-acting QTLs (N ¼ 17).
Some of the trans-acting QTLs were found to aggregate in
genomic ‘hotspots’. These hotspots presumably contain the
‘master regulators’, each controlling a large number of tran-
scripts. All the three rodent RI studies found more cis-regula-
tors and also strong evidence for ‘master regulators’. Chesler
et al. (5) reported that 83 of the top 88 QTLs were cis-
acting. In addition, they found seven trans-acting QTLs,
each of which influenced the expression of hundreds to thou-
sands of individual transcripts. Bystrykh et al. (4) and Hubner
et al. (7) also found that cis-QTLs tended to have more signifi-
cant linkage evidence and a few trans-acting hotspots. In con-
trast, Monks et al. (8) found no evidence of hotspots, although
they, like Morley et al. (9), used human CEPH LCLs, with
eight of 14 families identical. This discrepancy may have
many causes—these human studies, although using separately
cultured, partially overlapping cell lines, differed in marker
type, microarray platform, as well as in the approach in
which genes were declared as differentially expressed. It is
important to reconcile these differences in future studies. It
should also be pointed out that with thousands of partially
correlated phenotypes tested for linkage against the whole
genome, the statistical problem of multiple testing brings many
complications. The three rodent studies in Table 1 used a per-

mutation test to control for testing �1000 genetic markers and
the calculations of false discovery rate to control for testing
.10 000 transcripts. At a similar genome-wide P-value cutoff
of 0.05, the Chesler et al. study (5) revealed 10–20-fold fewer
QTLs than the other two rodent studies (4,7). While the rodent
studies found generally more cis- than trans-QTLs, the two
human studies reported predominantly trans-acting QTLs.
Although part of these differences might arise from real bio-
logical differences between different tissues and between
human and rodent systems (such as in genetic diversity and
selective pressure), technical differences are also important
to note. For example, both human studies focussed on highly
variable traits. Thus, it is possible that cis-acting influence
on expression shows smaller inter-individual variation in
cultured human LCLs and that such small effects are less
detectable when the environmental variability is large.

Some apparent cis-acting QTLs may be an experimental
artifact due to hybridization to mismatched probes: if the
target region of a probe contains a polymorphism, the tran-
script of one of the alleles will hybridize less well to the
probe—effectively confounding expression differences with
genotype differences. For example, some of the top cis-
acting loci in Monks et al. (8) were located in the HLA
region, where most genes are highly polymorphic and paralo-
gous genes are highly similar. The authors have cautioned
that these may not be regulatory QTLs but simple sequence
differences. Similarly, we have demonstrated that Affymetrix
chips can show an apparent cis-acting ‘expression’ difference
that is completely explained by differential hybridization due
to sequence differences in the probes (19,20). The impact of
this sequence artifact on reported QTL results needs to be
assessed. For interested readers, this additional analysis can
be carried out only if the raw, probe-level data are always
made available.

The fully genotyped, stable rodent RI lines allow not only a
high degree of technical replication, but also the integration of
data from multiple tissues, as well as comparison with organ-
ism level phenotypes. Between mouse brain tissue and blood,
QTLs for 297 genes overlapped (4,5), with most of these, as
one might expect, being cis-QTLs. Similarly, Hubner et al.
(7) found that �15% of the QTLs detected in rat kidney and
fat tissues were common to both, with a majority of these
common QTLs being cis-acting loci. Taken together, these
data suggest that trans-effects are more likely to arise from
tissue-specific regulation. However, trans-acting effects often
interact with cis-effects and are inherently broader and more
complex, reflecting the cumulative outcome of genetic, epige-
netic and environmental regulations. The actual trans-acting
polymorphisms may be coding variants in transcription
factors that directly affect their binding affinities to target
genes. Alternatively, indirect regulation may also come from
a multitude of feedback control processes, affecting RNA stab-
ility, activities of the gene products, the state of the cell as a
whole or the anatomy and cell type composition of the
complex tissues. Genetic influences at all levels of biological
organization, including intercellular signaling, may affect gene
expression in trans, as has been suggested by Yvert et al. (11),
who found that trans-regulators in yeast are not enriched for
transcription factors per se but are distributed broadly across
different categories of molecular function. Interestingly,
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Chesler et al. (5) pointed out that many of the hundreds of co-
regulated target genes were transcription factors, pointing to a
regulatory hierarchy, although the identity of the upstream
‘master regulators’ is still not known. This level of complex-
ity, involving polygenic regulation (multiple regulators for
one transcript), environmental input and pleiotropic effect
(control of many transcripts by a master trans-regulator),
makes it all the more challenging to delineate the underlying
mechanisms.

REGULATORY NETWORKS

With the microarray data or the protein interaction data now
available, one can attempt to reconstruct the associative net-
works: gene–gene correlation in expression levels across a
large variety of perturbations, such as different growth or treat-
ment conditions, different time points of a natural process
(growth, cell cycle), disease versus health or engineered
mutations, can be used to define groups of genes that are
co-regulated and by inference, may serve shared functions
(21), even directly interact with each other. The mapping of
trans-acting QTLs often identifies sets of correlated transcripts
as common targets of a trans-acting QTL, thus not only
corroborating the associative networks learned from other
types of perturbations, but also providing a powerful filter by
reducing candidate nodes in the ‘wiring diagram’ of regulatory
control. More importantly, the knowledge of genetic loci that
influence gene expression may shed new light on such networks
in terms of causality of regulatory relationships and the impact
of genetic polymorphism on such networks. For example,
Li et al. (22) described 66 QTL-derived candidate networks
on the basis of 209 trans-QTLs from the Chesler and
co-workers (4,5) data. Each network is a directed graph in
which genes located in the QTL intervals are candidate regula-
tors of the affected transcripts whereas expression levels of the
regulators themselves may map to other, upstream QTLs.

In a recent study, Brem and Kruglyak (12) found that among
the highly heritable transcripts in yeast, 40% had no QTL
detected, 16% showed epistatic interaction and most may
require more than five loci. Such amazing genetic complexity
for a simple eukaryote illustrates the magnitude of the chal-
lenges lying ahead for higher organisms. The studies mentioned
in Table 1 did not state whether the amount of variance exp-
lained by the discovered QTLs accounted for most of the total
genetic variance as estimated from the heritabilities; nor could
they systematically test interactions between pairs of loci
because of the limited sample size. It is expected that, for some
transcripts at least, a larger proportion of variance can be attribu-
ted to epistatic actions of multiple loci. Even with the current data
set, it might be useful to rescan for interaction effects conditional
on known positive QTL results. Knowledge of such statistical
epistasis will be invaluable in forming testable hypotheses
about actual biological interactions in gene networks.

CHALLENGES AND PROMISES

The genetic and regulatory mechanisms underlying disease
etiology is one of the central challenges in today’s biomedical
research. One of the main difficulties lies in the inherent

biological complexity. Genetic influences of gene expression
occur in the contexts of the specific tissues, developmental
stages and environmental inputs. For example, in human
brains, from subjects with depression and bipolar disorder
and controls, we found strong and widespread expression
changes due to the severity of the physiological stress at
the time of death (23). In this case, the impact of the
condition at death was stronger than any genetic factor affect-
ing transcription described to date. Such environmental factors
distract from the factors of interest: genetic variants and
effects of disorder on expression. But now, at least with
LCLs and RI strains, we have the potential of separating the
environmental factors from the genetic factors. Furthermore,
for genome annotation, the newly identified gene expression
QTLs are expected to facilitate the systematic identification
of sequence elements that confer regulatory function. For
disease etiology, the most likely candidate genes for future
functional and association studies will be those that carry
functional variants that impact either protein structure or tran-
scriptional regulation. As an early example, Schadt et al. (10)
found four candidate genes for obesity, which had gene
expression QTLs co-localizing with clinical QTLs for
obesity-related traits. One of these four, the Mup1 gene, was
highly correlated in gene expression or shared common
QTLs with many other genes known to be involved in the
obesity trait. Several association studies in complex
disorders recently identified non-coding SNPs or haplotypes
associated with the disorder [e.g. G72 in schizophrenia
and bipolar disorder (24,25) and GABRA2 in alcoholism
(26)], usually postulating that the variants might affect
expression. These claims can now be compared with the
QTL results, because they predict cis-association between
expression levels of the gene with the disease-associated
variants.

The scope of genetic analysis of gene expression also
presents enormous technical and analytical challenges. The
genetic reference populations of rodent RI strains and the
linked WebQTL (http://webqtl.org/) (27) provide an excellent
example of a collaborative framework in which multiple
investigators can contribute to data gathering and data
mining on the vast number of possible phenotypes. In
WebQTL, genetic data are stable and standardized, whereas
phenotypic data at all levels, including gene expression, pro-
teins and metabolites, anatomy, physiology and behavior,
can accumulate in time and be scrutinized both for genetic
influence of trait values and for correlations between different
traits across multiple levels of organization. Similar multi-
purpose computational tools, as well as a standardized data
format, will be absolutely essential for other systems such as
the human LCLs. For the latter, it would be helpful if the
CEPH cell lines and those lines studied in the HapMap
project (28) can be integrated in a community-wide database,
so that trait values such as the microarray data, collected under
baseline conditions as well as during perturbation, can be rou-
tinely reanalyzed by using the genotype information that is
already freely available for these lines. Although microarray
expression researchers have adopted a common data manage-
ment and exchange format (29,30) and a community-wide
commitment to data accessibility and timely release (31,32),
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a similar model needs to be developed for the genetic analysis
of quantitative phenotypes.

As the field of genetical genomics develops, it is expected to
catalyze the formal integration of genetic and gene expression
studies, which have so far been largely unrelated endeavors. A
global understanding of genetic variations that affect gene
expression will breathe new life into the vast amount of
genetic linkage and gene expression data accumulated over
previous decades for many important model systems for
complex diseases. We will significantly improve our ability
to dissect gene–environment interactions in light of their
separable contributions to molecular phenotypes. Some
common disorders will be understood as perturbations of the
associated networks by both genetic and environmental
factors. Normal phenotypic variation can already be integrated
to some extent, at least in the case of RI strains, for which
ample organism-level phenotypic data are available. In time,
proteomic, physiological and functional imaging results,
along with relevant interaction networks, will be integrated
as well. The timely merger of gene expression with genetic
analysis is just the beginning of a richer and more unified
systems biology approach that the age of genomics has pro-
mised to us.
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