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Summary 

A key characteristic of systems genetics is its reliance on populations that vary to a greater or lesser degree in genetic 
complexity—from highly admixed populations such as the Collaborative Cross and Diversity Outcross to relatively 
simple crosses such as sets of consomic strains and reduced complexity crosses. This protocol is intended to help 
investigators make more informed decisions about choices of resources given different types of questions. We con-
sider factors such as costs, availability, and ease of breeding for common scenarios. In general, we recommend using 
complementary resources and minimizing depth of resampling of any given genome or strain.  
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1. Introduction  

A large number of innovative resources for systems genetics have been developed over the last 
15 years (Williams and Auwerx 2015). There are at least two reasons for this burst of activity. 
The first catalyst was the introduction of far easier, cheaper, and more comprehensive 
methods of genotyping (Dietrich et al. 1995, Petkov et al. 2004) that we already take for 
granted. State-of-the-art genotyping for recombinant inbred (RI) strains consisted of ~1600 
microsatellite markers (dinucleotide repeats) in 2001 (Williams et al. 2001). Over the next 
five years this number increased to more than 10,000 SNPs (Shifman et al. 2006), and we 
now rely on genotypes at more than 100,000 SNPs using Affymetrix or Illumina platforms 
(Yang et al. 2009, Morgan et al. 2015) at modest cost—well under $0.01 per marker. The 
second reason was rapid progress on ways to map quantitative traits with progressively higher 
precision and power (Lander and Botstein 1989, Darvasi and Soller 1995, Darvasi 1998, 
Talbot et al., 1999, Williams et al. 2001, Complex Trait Consortium 2003, Churchill et al. 
2004, Singer et al. 2004, Flint et al. 2005, Broman 2005), culminating in the establishment of 
the Complex Trait Consortium in 2002 (Threadgill et al. 2003). A good problem we now 
face is selecting wisely from among the many options and resources that are available. Any 
choice is a major commitment. This protocol highlights factors researchers should consider 
and balance.  
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Guidance on using this protocol. The goal of this protocol is to step through the decisions 
associated with selecting resources for both QTL mapping and systems genetics. The first 
issue is to define classes of questions. Different questions benefit from different types and 
mixtures of resources—the cliché "different horses for different courses" applies. In Part 3 we 
review current murine resource used in QTL mapping and systems genetics. In Part 4 we 
consider one multipurpose experimental design that will work reasonably well for a range of 
questions. Consider this design a starting point for your discussions and decisions. We 
provide some notes on the pros and cons of the resources, many in a simple question-and-
answer format. Since everyone has their own biases, ask others for their opinions.  

These are among the main considerations or themes that go into the choice of resources 
for systems genetics:  

1. Cost and availability (strains, hybrids, cases)  
2. Phenotype diversity, heritability, and genetic architecture 
3. Marker density, mapping precision, and power 
4. Sequence diversity and genetic blind spots 
5. Selective phenotyping or genotyping 
6. Complexity of QTL intervals  
7. Population structure, admixture, and analytic methods 
8. Depth of genetic, omics, and phenome data resources 
9. Robustness, replicability, extensibility (G×E), and translatability 

To foreshadow our conclusions: Most researchers currently rely on a single type of resource or 
cross, and while there are good historical reasons for this focus, this is no longer an optimal or 
advisable strategy. We now have such a range of powerful genetic resources optimized for 
different purposes that it makes sense to take advantage of combinations of complementary 
crosses and even multiple species (Malmanger et al. 2006, Ghazalpour et al. 2012, 
Houtkooper et al. 2013, Williams et al. 2014, Wang et al. 2016). Analytic methods do get 
more complex when using combinations of resources, but some of the same methods used to 
handle admixed human cohorts in genome-wide and phenome-wide association studies 
(GWAS and PheWAS) have now been adapted to handle combined experimental cohorts 
(Lippert et al. 2011, Zhou and Stephens 2012, Fulotte et al. 2014).  

Our other conclusion is that mapping resolution of about 1 Mb will usually be adequate 
to transition to validation, including translational analysis of human GWAS and PheWAS 
data sets (Koutnikova et al. 2009, Wang et al. 2016), analysis of knockout (KO) and knockin 
(KI) phenotypes, bioinformatic and omics dissection, and pharmacological intervention. This 
is especially true in an era of super high precision but mechanistically unanchored GWAS. 
The need for high precision mapping in mouse has been supplanted by an acute need for 
powerful resources to understand and accurately predict genome-to-phenome (G2P) relations 
under a wide range of environments and treatments.  
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2. Types of Questions  

We consider four main types of questions. 

Type 1 Questions: The classic forward genetic question—what are the polymorphic genes 
and sequence variants that modulate a phenotype or disease risk? This is by far the most 
common question our research community has dealt with over the last two decades and will 
probably remain so for the next several decades. Almost all human GWASs have this same 
simple reductionist motivation—a simple generalization of the classic Mendelian approach 
but applied to messier and continuously variable quantitative traits.  

The repeated mapping of large numbers of QTLs and their causal QT genes (QTGs) 
quickly leads to complex systems-level questions—a transition we now are beginning to see in 
human GWAS. This shift has happened gradually over the past decade, including pioneering 
work by Wakeland and colleagues on the family of gene variants that contribute to 
autoimmune disease is a fine example (Subramanian et al. 2006). The work of Hunter and 
colleagues on metastasis networks (Hunter and Crawford 2008, Hu et al. 2012) and of 
Morahan and colleagues on type I diabetes (Morahan 2012) provide two other examples of 
this movement from QTL analysis to complex systems genetics. This shift is leading to the 
discovery of new biomarkers, diagnostics, mechanisms, and treatments.  

Type 1 questions are usually approached in two steps: the first involves mapping QTLs to 
confidence intervals of 0.5–5 Mb, while the second and more problematic step involves 
proving to your own satisfaction and that reviewers that a polymorphic candidate gene has 
been validated as a source of trait variance (Complex Trait Consortium 2003). Almost all of 
the technical motivation and innovation in the late 1990s and early 2000s in the field of QTL 
mapping addressed mapping precision, with less explicit consideration given to statistical 
power. There was, and still is a good reason for this focus of precision: once the right gene has 
been identified, it becomes possible to switch from genetic causality defined by loci and LOD 
scores, to actionable molecular mechanisms modulated by differences of protein expression or 
sequence. Thanks to many human GWAS, we now understand much better how to control 
the risk of false discovery using populations that incorporate more and more recombinations 
and complex admixture. One goal of this protocol is to help you get to a sweet spot with a 
balance of power and precision. A second goal is to help ensure that the results are robust and 
translatable. 

Type 2 Questions: Questions related to gene-by-environment interactions (G×E) and 
treatment effects on phenotypes. These types of questions will be crucial to those interested in 
systematic manipulations of diet, environmental stressors, age, pathogens, drug exposure, and 
differences in social interactions. Mice and other inbred and isogenic model organisms are 
extremely well suited to evaluate complex experimental effects in the context of QTL 
mapping. The ability to impose well-controlled perturbations across large cohorts is among 
the strongest motivations to use model organisms. This kind of design is already the most 
common and critical in agricultural genetics.  

Type 3 Questions: Questions related to the global genetic modulation of single traits or of 
systems of correlated phenotypes. These types of large-scale questions often fall under the 
heading of "genetic architecture." This term encompasses the analysis of many components of 
heritable and non-heritable variation, particularly the number and effect sizes of loci, 
independence and interactions among loci, and the roles of the environment, epigenetics, 
parental effects, and developmental noise (Mackay 2001). Oddly enough, before it became 
easy to map QTLs, these types of hard questions were at the heart of quantitative genetics. In 
fact, major branches of statistics had their birth in questions of genetic architecture, including 
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ANOVA and path analysis (Fisher 1918; Wright 1921). The diallel cross—the production of 
a matrix of F1 hybrids from inbred strains—is one of the mainstays of this type of 
quantitative genetics (Lenarcic et al. 2012). Recent examples include studies by Airey et al. 
(2001), Crowley et al. (2014), and Percival et al. (2016) who have used diallel sets of RI 
strains and the founders of the Collaborative Cross (CC). 

Type 4 Questions related explicitly to predicting G2P relations. Given summed effects of 
gene variants (Type 1 questions), G×E interactions (Type 2), and the architecture of all 
sources of variance (Type 3), can we assemble predictive models of disease risk as a function 
of age, environment, diet, and drugs? This is the core question and quandary of precision 
health delivery. Precision medicine will have a short grace period, but if geneticists, molecular 
biologists, statisticians, and computational scientists have not delivered something impressive 
to match the hype, this term and the field risks being dismissed as a misnomer in the same 
way that artificial intelligence (AI) was dismissed and left unfunded for long periods—so-
called AI winters. We need great experimental resources to generate and help validate 
predictions efficiently. The next section provides quick definitions and commentaries on the 
pros and cons of the important resources. 

 
 

3. Pros and Cons of Resources and Crosses  

We list of some of the major types of resources, from most simple to most complex in terms 
of level of genetic variation and complexity. The types of crosses and how they are generated 
are shown schematically in Figure 1 with numbers that correspond to subsections. 

1. Single fully inbred strains, such as DBA/2 and C57BL/6, are often the starting point for in 
vivo studies. We usually do not think of inbred strains in isolation as a resource for systems 
genetics, but a family of knockouts can be bred into a single isogenic strain (Dowell et al., 
2010) or a single KO can be crossed into a hundred different inbred strains (e.g. Bennett et 
al., 2015) to generate interesting cohorts.  
Large sets of distinct inbred strains incorporate a great deal of genetic variation (three are 
shown in Figure 1), and collectively may also be used as a core resource for systems genetics 
(Bogue et al. 2014). Genome sequence data are available for more than 36 inbred strains 
(Keane et al. 2011, www.sanger.ac.uk/science/data/mouse-genomes-project) most of which 
are also part of the Mouse Phenome Project (Bogue and Grubb 2004). Such collections of 
inbred strains—often termed diversity panels—provide a quick and ready resource for 
profiling how traits vary across a wide range of genomes, but there are not enough easily 
available strains to map QTLs effectively. Power is low and FDRs are high. However, sets of 
common inbred strains combined with sets of RI strains (more below) are an excellent joint 
resource for systems genetics—a combination called a hybrid diversity panel to which we 
return below. 

The most commonly used inbred strains have often been split into sets of substrains. 
These will carry different sets of a few spontaneous mutations that have been picked up over 
decades of maintenance in different colonies. In mice, C57BL/6J and C57BL/6N are the 
genetic backgrounds strains used for almost all KO, KI, and transgenic modifications 
(www.mousephenotype.org).  
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2. Reduced complexity cross (RCC) or coisogenic cross (CIC): Both are novel types of 
“postgenomic” intercrosses between very closely related substrains (Kumar et al. 2014, Heiker 
et al. 2014) or even coisogenic pairs. For example, genomes of the C57BL/6J and C57BL/6N 
substrains differ at a total of about 36 known coding variants (Keane et al. 2011) but these 
substrains also differ for a surprisingly large numbers of phenotypes, including responses to 
several drugs and treatments (Khisiti et al. 2006, Mulligan et al. 2008, Simon et al. 2013, 
Kirkpatrick and Bryant 2015). BXD29/TyJ and BXD29-Tlr4<lps-2J>/J are a coisogenic pair 
that differ at two or three loci (Rosen et al. 2013). How is it possible to map an F2 that has 
almost no sequence variants? Once two substrains have been sequenced deeply (>30-fold 
coverage), there will almost always be a large enough number of spontaneous non-coding 
mutations to assemble a sparse genome-wide panel of SNPs and indels for mapping sources 
of phenotypic differences.  

While the mapping precision of an F2 RCC or CIC will be poor (intervals of 20 Mb or 
more), the small number of segregating variants within any interval means that it can be 
practical to identify candidate QTGs and even QT nucleotides (QTNs) efficiently (Cardin et 
al. 2104). Kumar used this approach to define a mutation in Cyfip2 that controls response to 
cocaine and methamphetamine (Kumar et al. 2014). The utility of an RCC in mapping and 
even in systems genetics points out that the key variable in "cloning" QTLs is not mapping 
precision per se but the number of polymorphic genes and sequence variants within a QTL’s 
confidence interval. A 5–10 Mb interval containing only a single sequence variant will be far 
more easily reduced to cause and mechanisms than a highly polymorphic 0.1 Mb QTL 
containing five genes and hundreds of sequence variants (Li et al. 2010, Kumar et al. 2014).  

	  
Fig. 1: Breeding schemes used to generate the resources. Short bars symbolize pairs of chromosomes. The colors 
(usually red, white, or black) denote the haplotypes/genotypes of the chromosomes. The large numbers cor-
respond to Section 3 subheadings. Tg - a transgenic line. For all other abbreviations see text of Section 3. 
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3. Consomic and congenic whole genome panels: By backcrossing two inbred strains to each 
other while tracking genotypes of progeny over several generations, it is possible to effectively 
transplant whole chromosomes from donor strain A into recipient strain B. A full set of 
consomic strains will consist of 22 lines, each with one swapped chromosome plus the 
recipient control strains. There are now two sets of consomic strains—crosses of A/J or 
PWD/Ph into C57BL/6J (Singer et al. 2004, Gregorova et al. 2008). Buchner and Nadeau 
(2015) have considered the pros and cons of consomic sets (2015) and their efficiency relative 
to other resources.  

A whole genome congenic panel is basically a finer-grained version of a consomic set, but 
now each strain contains only a piece of a single donor chromosome (Davis et al. 2005). The 
main utility of consomic and congenic sets is their high power to map phenotypes to single 
chromosomes. They have been used more recently to study epistasis and epigenetic effects 
(Buchner and Nadeau 2015). Their main disadvantage is that mapping QTLs requires the 
production of a secondary F2 intercross or a set of interval specific congenic strains. Whole 
chromosome effect sizes will almost inevitably decrease during this process (Bryant et al. 
2012).  
 
Off-target mutations and isogenic strains. One important factor to consider before using 
congenic and consomic strain sets is their sensitivity to spontaneous mutations that will 
accumulate gradually and progressively on the recipient (non-transplanted) background 
chromosomes. Spontaneous mutations or allele conversion events that arise on these other 20 
chromosomes can cause variant phenotypes, and these new phenotypes risk being 
misattributed to putative variants on the donor chromosome, effect—essentially off-target 
effect (Williams 1999). It is therefore useful—sometimes even essential—to verify that traits 
map to the introgressed chromosome by making a small F2 from the consomic or congenic 
stock. Tracking down off-target variants is difficult because there are no known 
polymorphisms with which to map the other chromosomes. Sequencing consomic strains and 
using RCC methods is the obvious, but costly solution. 

This raises a broad issue that applies to all crosses that are carried for many generations, 
including standard inbred strains, RI strains, AI progeny, and HS stock: what is the relative 
impact of inevitable de novo mutations on the measured phenotypes and results of different 
types? The good news is that for most of these resource types, new mutations will be unique 
to one strain or one case and do not segregate across the whole cross. Provided that the 
analysis and results are statistical collectives based on a large sample of strains or cases, then 
rare mutations, even those that are fixed in single strains, will simply be lumped as another 
source of error variance. In contrast, in situations in which mapping and other results depend 
on a single case and control—as when using congenic and consomic lines—there is a risk of 
misattribution of effects.  

4. F2 intercrosses and backcrosses: The F2 intercross has been used widely in systems 
genetics, starting with the work of Damerval, Schadt, Lusis, and colleagues (Damerval et al. 
1994, Schadt et al. 2003, 2005). Their main advantage is the ability to make large numbers of 
progeny quickly from almost any stock (usually inbred strains). F2 and N2 backcrosses have a 
structure that makes mapping and the analysis of covariance among traits simple. There is no 
need to correct for population substructure (see Note 1)—a problem that arises in almost any 
multi-generation cross (e.g. heterogeneous stock (HS), AIs, and RI strains, see Williams et al. 
2001). It is practical to enhance the complexity and utility of an F2 intercross for systems 
genetics and for standard QTL mapping by making a four-way F2—for example by crossing 
A×B F1s to C×D F1s to produce AB×CD F2 progeny. This type of F2 is being used in a 
long experimental study of life span in mice (Miller et al. 2007). 
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5. Advanced intercrosses (AI) are simple extensions of F2s in which all subsequent 
generations are randomly bred, but with careful avoidance of sib matings (Darvasi 1998). The 
number of recombination events per AI case climbs steadily as the depth of the pedigree 
increases. At the 8th generation (about two years of breeding), 100 AI progeny, if made 
correctly, will provide about the same mapping precision as 500 F2 for Mendelian traits 
(Darvasi and Soller 1995). The countervailing problems with AIs are (1) the more complex 
logistics of using more than 100 breeders for up to 10 generations has a high cost, (2) the 
variable kinship among AI progeny needs to be factored into any kind of mapping or other 
statistical analysis, (3) the need for a significantly higher density of markers, and, perhaps 
most seriously (4) the loss of power associated with the increased number of recombinations 
per animal. A solution to some of these issues, first pointed out by Darvasi and Soller (1995), 
is to generate RI strains from AI stock—so-called Advanced RI (ARI) strains—and both the 
CC and many of the new BXD strains are actually ARIs. 

Trade-Offs. There are important trade-offs between mapping precision and mapping 
power—the ability to detect QTLs with effects that account for a defined percent of the trait 
variance assuming a given sample size. As pointed out by Lander and Botstein (1989), the 
longer the genetic map, the higher the thresholds for statistical significance. The relation is 
complex, but Table 1 provides a rough guide of tradeoffs. One column is marked Recs/case or 
recombinations per case, and a second column is marked LOD Threshold, or the linkage 
score that will often be needed to achieve genome-wide significance. Recs/case is an index of 
the potential precision of a resource, whereas the LOD score in this context is an inverse 
index of statistical power. High Recs/case are good for precision, but high LOD score 
requirements are bad for power.  

The goal of course is precision with power. The simplest way to get both is to type larger 
and larger numbers of cases. (We are all familiar with the exceedingly high numbers of cases 
that must be used to achieve the genome-wide significance thresholds in human GWAS—
typically LODs of around 8.) A better solution is to combine complementary resources—one 
optimized for power such as a conventional F2 or conventional RI strains, and one optimized 
for precision—such as the Collaborative Cross (CC), a Hybrid Diversity Panel (HDP), AI, 
HS or DO stock. The reason why joint resources are not used widely yet is because (1) many 
of the resources are new, and (2) the computational aspects of the analysis are more involved. 
But we now have powerful algorithms (e.g., Lippert et al. 2011, Zhou et al. 2012) that can 
handle dense genotypes and complex cohorts and covariates. Some of these are available 
online in the new version of GeneNetwork. 

5a. RI strains: RI strains were originally made for mapping highly penetrant Mendelian traits 
(Bailey et al., 1971, Taylor et al., 1973), but they were eventually adopted for the analysis of 
complex traits (Gora-Maslak et al. 1991). RIs are now a key resource in systems genetics. 
Their main advantage relative to F2s and HS is that each unique genometype (genetic 
individual) is represented by a stable inbred strain that can be replicated in large numbers—
essentially a sexually reproducing clone. RIs are therefore an excellent resource for studies that 
benefit from replication across individuals (e.g. dosing and toxicity studies of genotypes) or 
across environments (i.e. studies on G×E), and for the gradual assembly of deep phenome 
data that can be used in G2P analysis. In mice, there are now sufficient numbers of RI strains 
to allow for comparatively precise and well-powered QTL mapping. There are currently two 
major types of RI strains in mice: 

(1) Classic two-parent RI strains. There are a total of about 340 of these types of mouse 
RI strains, including ~150 BXD available as live stock and many other small RI families: 
AXB/BXA (29 live), AKXD (20 cryopreserved), BXH (12 live), BRX58N (7 
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cryopreserved), CXB (12 cryopreserved), ILSXISS (60 cryopreserved), LGXSM (~18), 
NXSM (15 cryopreserved), SWXJ (13 cryopreserved).  

 (2) The Collaborative Cross (CC). This is a unique eight-way RI set of about 100 strains 
that is now in widespread use for QTL analysis and systems genetics (Threadgill et al. 
2003, Churchill et al 2004). These strains are available both from UNC Chapel Hill and 
the Jackson Laboratory. 

Classic RI strains that are derived from standard F2 intercrosses harbor more recombinations 
per genome—about 40 to 50—than do backcrosses (10 to 15), or F2 intercrosses (20 to 30) 
and therefore deliver better QTL precision than one might expect even with modest samples 
size (Fig. 1, note the alternating red and white haplotype blocks that make up the 
chromosomes of the RI strains). The ability to resample individuals also reduces non-genetic 
trait variance—effectively boosting heritability (Belknap 1998). Pandey and Williams (2014) 
computed the empirical precision of cis-acting expression QTLs (cis-eQTLs) in the BXD 
family across the whole genome at different mean LOD scores and at different marker 
densities (their Figure 8.6). With a cohort of 67 strains and using only two samples per strain, 
eQTLs with LOD scores of between 3 and 5 were located within ±2 Mb of the cognate or 
parent gene. Those with LOD scores above 8 were typically within ±1 Mb. Corresponding 
empirical mapping precision based on cis-eQTLs can now be easily computed for many 
resource types across the whole genome using data sets and queries built into GeneNetwork 
(Mulligan et al. 2016, this volume). Examples of doing this for a large AI (n = 811) and a well 
matched AI-derived RI set (n = 40) are given in Note 2.  

The CC RI strains are capable of even better mapping precision than standard RIs for 
two reasons. First, the recombination load (the crossover probability) of CC strains is 1.75 
times higher than that of typical two-parent RI strains due in part to the rounds of 
intercrossing required to merge all eight genomes (Table 5 of Broman 2005). Second, the 
inclusion of multiple parental genomes within the CC means that it is possible to carry out a 
fine-grained haplotype contrast analysis that can effectively reduce QTL intervals and 
numbers of QTG candidates (Yalcin et al. 2005). Haplotype contrasts of the same general 
type can also be exploited using combinations of conventional RI families, inbred strains, and 
F2 crosses (e.g., Taylor et al. 1973; Williams et al., 1998, Malmanger et all 2006, Furlotte et 
al. 2012). 

The most important disadvantage of conventional RI strains and other standard two-
parent crosses is that they segregate for only a fraction of all known polymorphisms. For 
example, the BXD family segregates for a total of ~5.2 million sequence variants—about 44% 
of common variants among standard inbred strains (Roberts et al. 2007). Some stretches of 
the genome will be almost completely identical by descent (e.g., Yang et al. 2007, Li et al., 
2010) and these regions will not normally contribute much to trait variance. This 
disadvantage however may also be viewed as an advantage when trying to dissect a QTL, 
since the load of polymorphisms within an interval may be an about 6-fold lower than that of 
the corresponding interval in the CC or DO stock, and thus the number of viable candidate 
genes may be much reduced. As shown by Li and colleagues, phenotypes that map into these 
genetic blindspots can be particularly easy to map to QTNs (Li et al. 2010). 
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A practical disadvantage of RI strains is that they often have poor breeding performance 
compared to many F2s and outbred stock. While BXD strains average 4–5 pups per litter, 
some are hard to maintain and can be sensitive to housing conditions. Many CC lines have 
even lower fecundity. This is one reason why many inbred strains are so much more expensive 
than outcross or HS animals (Table 1) and why they are often cryopreserved rather than kept 
as live stock. This issue was also a factor motivating the creation of the DO: it provides a way 
to stabilize recombinations events that were at risk of extinction (Gary Churchill, personal 
communication). Speaking of the obvious, a final disadvantage of RI strains that is that they 
are inbred—an anomalous genetic architecture that will not only decrease fitness but will 
often increase trait variance relative to isogenic F1 hybrids due to the loss of heterosis and 
allele buffering.  

5b. Advanced RI lines. There are also several interesting variants of RI strains. The first of 
these are highly recombinant RI strains generated from AI progeny (Darvasi and Soller 
1995). Many of the new BXD strains (BXD43 and higher) are AI-derived (Williams et al. 
2001, Peirce et al. 2004), as are all of the LGXSM strains (Hrbek et al. 2006). Instead of 
directly inbreeding siblings of an F2, progeny are crossed to avoid sib matings for as many as 
30 generations, prior to the inbreeding phase (another 20 generations). The main benefit of 
using AI stock for making RI strains is a significant increase in potential QTL mapping 
precision (Note 2), but as usual, with loss of power.  

5c. RI Backcrosses. The second variant involves making a set of F1 intercrosses between RI 
strains and a single inbred strain—usually one that carries interesting modifier alleles with a 
dominant or additive effect. For example Hunter and colleagues crossed 18 AKXD RIs to an 
FVB strain carrying a dominant cancer gene variant to map modifiers of metastasis (Yang et 
al. 2005). They refer to this cross as an RI backcross (RIB) because the 18 sets of F1s are 
similar to a backcross—those chromosomes inherited from the RI parent are recombinant, 
whereas those inherited from the other strain are not. This idea can also be generalized across 
multiple RI sets and inbred strains. For example, Bennett and colleagues crossed an APOE 
transgenic strain to more than 31 common inbred strains and 66 BXD, AXB/BXA, BXH, 
CXB RI strains (Bennett et al. 2015) to study the genetic architecture of atherosclerosis. 

6. RIX panels: RIX panels are a clever new extension of RI strains that have some interesting 
advantages over RI strains and HS. Given a set of 10 RI strains, it is simple to cross all of 
them to each other: 1×1, 2×1, 3×1, 3×2 and reciprocal crosses 1×2, 1×3, 2×3, and so on. From 

Table 1: Comparisons of resource types 
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only 10 starting strains one can produce a full diallel set made up of 100 isogenic sets of F1. 
In a full diallel we do not gain much precision by resampling the same parental haploid 
genome in different combinations (1×2, 1×3, 1×4 etc.). While no new recombination event 
occur in making these F1s, one does expose an interesting range of phenotypes, such as those 
exploited by Rasmussen and colleagues (2014) to develop mouse models of Ebola infection.  

What makes RIX particularly attractive now for both mapping and systems genetics is 
that we have several large sets of RI strains—more than 100 BXDs and close to 100 CC lines. 
While it is not practical to generate or study a full 200 × 200 matrix of 40,000 RIX progeny 
and founders, it is practical to sample all 200 of these RI genomes by making 100 non-
overlapping sets of RIX litters: 1×2, 3×4, ... 198×199, and 199×200. And two different RI sets 
can be crossed (e.g., BXD1 to CC001). A set of 100 disjoint (non-overlapping) RIX progeny 
solves a number of problems—(1) efficient sampling of large RI families that exploits all 
recombination events in the parental RIs; (2) much lower inbreeding coefficients than inbred 
parents; (3) genetic complexity much more like that of human populations; (4) ability to study 
parent-of-origin and dominance effects; (5) fully defined genomes, and (6) deep replication of 
any particular RIX to increase phenotype precision, (7) more direct analysis of G×E using 
precisely the same genometypes under two or more conditions; and as a (8) powerful resource 
to test predictive models of G2P relations.  

Disadvantages of RIX sets include the following: (1) they can be costly to generate 
compared to HS or DO stock; (2) there will be a loss of genetic variance associated with the 
heterozygozity of RIX progeny compared to homozygous parents (Hegmann and Possidente 
1981); (3) breeding and cohort logistics are somewhat more complicated and expensive; and 
(4) it will be difficult for a community of researchers to define a single reference set of RIXs 
to use for collaborative phenotyping because there are such huge numbers of potential RIX 
that can be made.  

7. Hybrid Diversity Panels (HDP): A hybrid diversity panel is an aggregate of RI strains and 
common inbred strains that are usually phenotyped together and used as a single joint 
mapping resource (Williams et al. 1998, Overall et al. 2009, Ghazalpour et al. 2012). They 
are used for at least two reasons: (1) to achieve comparatively high mapping precision 
(intervals of 1–5 Mb) that can match those of HS and DO stock using as few as 100 inbred 
strains; (2) to make it possible to assemble large phenomes that can be used for G×E analysis. 
A HDP does not have a rigid definition, and a mouse HDP could and should include CCs, 
BXDs, and even RIX. Depending on its membership of isogenic genometypes, an HDP will 
share some of the same problems of any one RI family, but to a lesser degree. For example, 
the issue of genetic blind spots will be less serious except for a few regions of the genome that 
tend to be identical-by-descent even in the CC. The main problem of an HDP is the 
generally low to moderate fecundity of members and their high acquisition costs.  

8. Outbred stock (OS), Heterogeneous stock (HS), and Diversity Outcross stock (DO): 
Outbred stock (OS)—often referred to as Swiss Webster stock (Lynch 1969, Chia et al. 
2005)—are the progeny of a nine albinos (two males and seven females) imported from a 
colony in Lausanne to New York in 1926. They were subsequently distributed to researchers 
and commercial vendors worldwide as "standard laboratory" mice. As expected given this 
history, OS do not incorporate much genetic variation. Genomes of 66 OS colonies studied 
by Yalcin and colleagues (2010) were heterozygous at no more than 34% of polymorphic loci, 
and a significant number of colonies were almost fully inbred. The theoretical attraction of 
some OS colonies is their potential high mapping precision with LD blocks that are only a 
few hundred kilobases.  

HS and DO could be considered variants of OS, but here we use a modern definition of 
HS and DO as special stock generated from well-structured intercrosses and outcrosses 
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among diverse sets of inbred progenitor strains. HS are almost always maintained using larger 
colonies—50 or more breeding cages—and breeding schemes that minimize mating of closely 
related individuals. One original motivation to make HS was to produce new models by 
intercrossing diverse strains and then selectively breeding progeny for high and low 
phenotypes in responses to drugs, alcohol, and other treatments (Kakihana et al. 1966, 
Holmes et al. 1986). The Northport HS (HS-Npt) made by intercrossing A/J, AKR/J, 
BALBc/J, CBA/J, C3H/HeJ, C57BL/6J, DBA/2J, and LP/J is a good example (Hitzemann 
et al. 1994). HS have also been used for high precision QTL mapping (Valdar et al. 2006).  

The DO is an example of a modern HS made by intercrossing early generations of the CC 
(Churchill 2012, Svenson 2012). DO mice are significantly more diverse even than HS-Npt 
or outbred stock for the simple reason that three of the progenitors of the DO and CC—
PWK/Ph, CAST/Ei, and WSB/Ei—are inbred strains derived from highly diverse wild Mus 
species and subspecies. DO cohorts are now at the 22nd generation (G22) of outcrossing. The 
DO segregate for well over 40 million common sequence variants with minor allele 
frequencies above 10%. These animals breed well and incorporate 4 to 6-fold more genetic 
variants than the number of common variants in human populations.  

There are two key advantages of DO and HS: (1) they have a genetic complexity that 
equals or exceeds that of most human populations. They are excellent models for precision 
medicine; (2) like AI cohorts they gradually accumulate large numbers of recombinations and 
therefore can resolve QTLs with high precision; (3) the high genetic diversity among parental 
strains ensures that phenotypes will be highly variable and that most regions of the genome 
will be polymorphic, and finally; (4) they usually have excellent breeding performance, a 
feature that reduces costs.  

The main disadvantages of HS and DO stock is the inevitable flip side: the high 
recombination load will reduce statistical power and the high genetic complexity and numbers 
of haplotype can make it difficult to resolve single linked QTGs and QTNs. The last and 
most obvious experimental disadvantage is that HS and DO animals are genetically unique. 
This means that it is more difficult to acquire phenomes for these types of resources or to use 
them as effectively in G×E studies.  
 

 

4.  A Multipurpose Design for Systems Genetics 

In this section we consider some of the designs that can now be used to address the four types 
of questions in Section 1. In the first section below (4.1) we consider Type 1 questions with a 
focus on mapping precision. In the second section, we start to wrap everything together by 
considering a single adaptable design for systems genetics that will be good for most 
discussion purposes. We comment on ways to modify or extend this multipurpose design 
using a Question and Answer format. Much of the text is summarized in Tables 1 and 2. 

4.1. Genotypes and genetic maps: What mapping resolution is needed?  

The goal is usually to get down to about 1 Mb precision as efficiently as possible. Assume we 
are completely naive—we only know what traits interest us and that it is somewhat variable 
among individual mice belonging to a few strains or stocks. We do not have estimates of 
heritability and we do not yet know what strains or crosses would be most useful.  

One of the best resources in this situation is to study phenotypes in a small number of 
strains and F1 hybrids between these strains. This made sense several decades years ago (e.g., 
Taylor 1973, Williams et al., 1996) and it makes even more sense today (e.g., Graham et al. 
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2015) because these initial "survey" data can eventually be wrapped into a mapping study with 
all other resources—whether HS, DO, CC, or RIX. For example, a study of 6 individuals 
each of 18 isogenic groups, such as sets of fully inbred strains some of their F1s, will answer 
questions related to trait heritability, trait dominance, and if you are lucky, even give you hints 
about genetic complexity and architecture. It may be possible to evaluate if the trait or disease 
phenotype is controlled by a small number of QTLs (the oligogenic model) or by hundreds of 
QTLs (the polygenic or "infinitesimal" model) (Taylor 1973, Williams 1996). This 120-case 
study will also enable you to perfect phenotyping and learn much more about sources of 
technical error, sex differences, and selecting better resources for the next stages. 

The main risk in this type of pilot study is batch effect and phenotype rift. Systematically 
phenotyping strains A through R at a systematic pace of one genotype per week over 4 
months is a poor experimental design, since temporal variance and drift will masquerade as a 
heritable difference among lines. Interleave the phenotyping to study 10 different genotypes 
with 1 or 2 individuals each for the first phase of the experiment and then repeat cycles as 
needed. An interleaved design may not be feasible in all situations, in which case consider re-
phenotyping well-known strains throughout a study to check for drift. 

Mapping precision: While more mapping precision is always a good thing, there is not much 
justification to refine maps down to much less than confidence intervals of 1–2 Mb. Intervals 
of this size can now be efficiently dissected using an impressive and diverse array of data 
resources—including of course, full genome sequence for all genes in all strains. A small 
number of candidate genes and variants can now often be tested efficiently now using 
genetically engineered mice, fish, flies, worms, or human GWAS data sets, in vitro analyses, 
or even phenome-wide association (Wang 2016). 

Another reason not to obsess about precision much below 1 Mb is the fuzzy functional 
definitions of genes. This is highlighted by a recent analysis of one of the strongest loci that 
modulates obesity in humans—SNPs within intron 1 of the FTO gene. While the position of 
linkage is not in question, these SNPs apparently tag variants in a long-range enhancer of 
IRX3—a small transcription factor 0.5 Mb distal (Smemo et al. 2014). This emphasizes that 
functional validation is critical, and that the law of diminishing can kicks in with some force 
under 1 Mb. We consider a 0.5 to 1 Mb as a reasonable goal that can usually be achieved 
efficiently using a combination of resources described below. This is not quite as precise as 
what can be achieved with large GWAS, but unlikely human studies we can efficiently 
transition to molecular mechanisms. 

4.1. Assumptions 
To develop this multipurpose design we assume almost nothing other than that the traits of 
interest are heritable and genetically complex, and that the initial focus is not on G×E or 
treatment effects, developmental stages and ages. We will come back to extensions that these 
types of questions toward the end of this section. 

Sample size and costs of stock. As our starting parameter, we budget for 240 individuals per 
year over a four-year period—960 cases total at a pace of 20 per month and 1 per day. This is 
a modest throughput that should be adaptable to almost any type of study, even 
electrophysiology, advanced imaging and behavioral methods. The cost of mice may range 
from as little as $20 per case to as much as $200. Standard inbred strains such as those used to 
generate the CC cost between $20 (C57BL/6J) and $200 per animal (WSB/EiJ) with an 
average of $102. The average price for most of the resources discussed in this chapter is 
currently about $150 per case. An experiment using 240 cases/yr will typically require a 
budget of ~$40,000/yr. Housing costs are variable, but it is safe to assume 25 to 50 cages will 
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incur a cost of $10,000 to $20,000/yr. If cases must be genotyped (e.g., F2, HS, and DO 
stock), then factor in a charge of as much as $100 per case (Table 1). 

Sex balance. Whenever possible males and females should be used in roughly equal numbers 
and concurrently. Not only is the use of both sexes becoming a mandate, but results will also 
be more interesting and robust in terms of their translational relevance. Finally, sex 
differences can provide mechanistic insight. The inclusion of both sexes in a design does not 
double the required sample size, even when using isogenic cohorts of RIs, RIXs, or HDPs. A 
balanced sample of just one or two males and females across multiple genometypes can be a 
powerful design to detect sex differences. Of course, sparse sampling does not address sex 
differences within any single strain, but this is a topic that may be worth revisiting in a second 
phase of work. 

While it may look tidy in a Methods section, it is not necessary to get numbers of cases 
balanced precisely either by sex or genotype. Do not obsess about filling every cell in a design 
uniformly. If you must obsess about anything, make it (1) batch confounds, (2) drift in 
phenotyping standards, and (3) quality control for electronic records and case identifiers. 
When possible consider whether litter effects are a confounding factor in phenotype variation. 
This is a particular risk for RIX designs in which one single litter may be used for each 
genotype.  

4.2. Experimental Design for Systems Genetics (see Table 2) 
Stage 1: Heritability, technical robustness of assays, effects of sex, and genetic architecture. 
The main purpose of phase 1 is make sure we understand more about the main sources of 
variance of phenotypes. It is well worth a 3–6 month pilot to make sure the phenotyping 
methods and assays work well. The data from this initial work will eventually be useful for 
mapping. 

Group 1A: 6 individuals each of 8 inbred strains. It would make great sense to start with 
the parents of the CC. Depending on your field of study you could add or substitute 
AKR, BALB, DBA/2J, FVB or other common strains, 
n = 48 

Table 2: Multipurpose design for systems genetics 
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Error-checking. Since assignment errors can destroy your results, keep track of coat color, 
and even better, save tails of animals for post-hoc genetic verification. This is important 
for all stages of the work. 

Group 1B: 6 individuals from each of 4 F1 hybrids made using strains A through H (AB, 
CD, EF, GH, or the reciprocals AB, BA, CD, DC). The parental strains for the F1s can 
be selected based either on greater genetic differences or on contrasting phenotypes. 
n = 32 

Group 1C: 6 individuals from each of 8 additional types based on the initial results above, 
or to encompass other interesting strains selected from the Mouse Phenome Project 
(phenome/jax.org) or based on any interest you have in RCC methods. You could also 
use this set of 48 cases to resolve problems or seize opportunities. This set could include 
F1 hybrids. 
n = 48 

Question 1: Is 6 samples per type really enough? ANSWER: If you are not examining 
different environmental factors, then yes. In fact, you probably should not do 6 per type 
at any one time or from only 1 or 2 litters, but break work into analysis of 2–4 cases for 
each of 12 types, and generate data over several batches. You may want to run pairs of 
male and female (litter mates even) in single batches, since you are likely to be used paired 
t tests. If you find that the batch effects are large, then you have learned something 
important and may need to rethink the design of the larger study. If you find that there is 
variation as a function of age, you have also learned something important. Furthermore, 
after phenotyping 6 per type, you will have a good idea if any particular type needs to be 
resampled to higher Ns. Note 3 discusses some of the factors that should be considered 
when selecting number of biological replicates. 

Question 2: Should I use wild strains such as PWD/PhJ, CAST/EiJ or WSB/EiJ? 
ANSWER: Yes, unless there is some specific contraindication, such as cost, availability, 
or wildness (Wahlsten 2003). There is no reason to not expose yourself to the remarkably 
wide range of phenotypes at this stage. (Make sure you unbox wild strains carefully or you 
will have stories to tell.) 

Question 3: Should I use HS or DO stock initially? ANSWER: No, not unless you have 
already used these types of resources or need them to address a specific hypothesis. You 
cannot estimate heritability from a single cohort of HS animals  

Question 4: Should I phenotype pairs of closely related substrains? ANSWER: Probably 
not at this stage unless you already know that there are significant differences in related 
phenotypes among substrains. If you are interested in exploiting RCC methods then 
include pairs or trios of substrains in Group 1c. Genetic variance will be lower in 
substrain contrasts, so you will need to increase sample size to 8–12 per type. 

Question 5: Why are F1 hybrids useful? ANSWER: For at least these three reasons: (1) 
F1 hybrids are used to evaluate effects of gene variants on phenotypes in organisms with a 
more typical heterozygous genome. F1 hybrids are isogenic so they have many of the 
advantages of inbred strains.  (2) F1 hybrids also enable us to evaluate whether 
phenotypes are dominant or recessive. (3) Reciprocal F1s can be used to study parent-of-
origin effects on phenotypes. Note that some of these advantages do not apply to F1s 
between closely related substrains. 



	  Williams	  RW,	  Williams	  EG	   	   	  	  	  	  	  	  	  	  	  Resources	  for	  Systems	  Genetics.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Methods Mol Biol: in press	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  

15	  
	  

Stage 2: Low resolution mapping and systems genetics.  The purpose is to understand the 
genetic complexity of phenotypes by low-resolution mapping but with good power. If there 
are a few QTLs with large effects then even a cross with 40 genometypes will highlight one or 
two loci. Since we rely on RI strains for this first analysis, it should be possible to compare all 
new data with all previously generated phenotypes and QTLs. We can be confident to find 
some interesting leads, generate new hypotheses, and perhaps even gain mechanistic insight.  

Group 2A: 4 each of 40 RI strains. Use 4 each if heritability is <0.4, otherwise consider 
using 2 each of 80 strains, particularly if you suspect that trait variance is controlled by a 
major effect locus. You can always return to the RI strains to boost your samples size. 
n = 160  

Group 2B: Same as above, but using a new set of 40 RI strains. You will now already 
know if you have detected suggestive or significant QTLs. If the answer is yes, then you 
can selectively phenotype those RI strains that have recombinations between the right 
haplotypes in the right regions. You might also want to replicate any outlier strains 
detected in Group 2A. If the results from Group 2A do not yet provide compelling 
candidates, then just forge ahead with more or different RI strains.  
n = 160 

Question 6: Could I not use RIX in Group 2B? ANSWER: Yes, since you will have RI 
strains available, this is an option. However, the RIX will not provide you much more 
genetic signal unless you use different RI parents to make the RIXs. RI and other fully 
homozygous strains have twice the genetic variance of F1 hybrids. This gives them a 
power advantage at early stages of mapping.  

Question 7: Should I use BXDs, AXBs, or the CC strains? ANSWER: The CC will 
almost always be a good choice, as they are likely to exhibit the highest phenotypic 
variance in any target phenotype. BXDs and AXBs will provide better mapping power per 
case due to their lower genetic complexity, but this benefit can be neutralized by less 
phenotypic variance. If the parents of the RI panels differ markedly and your focus is 
more on systems genetics than mapping precision (e.g. C57BL/6J vs DBA/2J), then the 
BXD may be the best first choice for the simple reason that so much data has been 
accumulated for these strains. Availability of RI strains can sometimes be the main 
constraint.  

Question 8: Can I mix CC stains with other RI panels? ANSWER: Yes, and this is 
precisely the motivation for resources such as the HDP. It is probably a good idea to 
sample at least 16 strains in any one RI set so that you can evaluate whether or not a locus 
is segregating and so that you can estimate trait covariance to some degree among 
phenotypes within single RI families.  

Question 9: Should I use consomic or congenic panels for this work? ANSWER: No; not 
unless your screen in part 1 included PWD/Ph and A/J and suggested that these strains 
differed markedly from C57BL/6J. These are the strains that have been used to make 
consomic sets. Consomic strains can have good power if you sample each of 20 strains 
with 6 or more cases, but to achieve mapping precision (±5 Mb), you will have to 
generate your own derivative crosses, and effect sizes of loci can evaporate during the 
production of congenics (Bryant 2012). 

Question 10: How do I handle outlier strains in the initial QTL analysis? ANSWER: 
Transform data so that outliers do not have an overwhelming effect on maps and other 
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statistical results. You can winsorise high and low outliers or use a logarithm transform. 
Replicate outliers if you suspect technical error.  

 
Stage 3: High resolution mapping and more systems genetics 

Group 3A: 4 each of 40 sets of RIX progeny that are produced by crossing within or even 
across sets of RI strains. You will need 80 RI strains to make 40 non-overlapping RIXs. 
Vendors may be willing to do this for you if the strains are not available to you. At this 
point you will almost surely have a small set of reasonably well mapped loci. You will also 
have enough data to decide if you want to reevaluate your questions. Are you really after 
QTGs, do you want to test a specific intervention, or do you want to try your luck at G2P 
prediction using a set of molecular and genetic biomarkers? This first set of 40 RIX 
progeny should enable you to do all three.  
n = 160  

Group 3B: Same as above but this set could be generated to test an intervention or age 
(using Group 3A as a control). Or this RIX group could be created selectively to test 
multilocus interactions or parent-of-origin effects.  
n = 160  

 
Stage 4: High resolution mapping, predictive validation, and systems genetics. The 
combined results of the three stages should have left you with a set of loci mapped to less than 
2 Mb. If that is not the case, then this final stage should help achieve that goal. Ideally, you 
might want to select DO stock on the basis of genotype, and that may be a service that will 
soon be available. This would be most useful if only one specific haplotype contrast is 
generating trait variance (e.g., a 1 vs 7 split of haplotype effects).  

Group 4A: DO or HS. DO stock will probably be most accessible and also generally 
most suitable.  
n = 100 

Group 4B: Your wildcard. You could continue with a second set of 100 DO mice if the 
first results strengthened results. Or you could use the DO mice you still have to 
selectively cross animals with specific combinations of alleles. This would require selective 
genotyping of specific SNPs. DO mice are a wonderful source of genetic variance, but 
you may want to select or trim back some of those variants. This will position you well to 
predict phenotypes based on combinations of haplotypes at two or three loci.  

Alternatively, use this group of cases for further studies on the effects of treatment, 
age or stage (see Group 3B)   
n = 100 

Question 11: How do I genotype DO or HS? ANSWER: Even in the most demanding 
situation of mapping DO, HS, and wild caught populations markers need only be about 
100 Kb apart (Yalcin et al. 2010), and since the mouse genome is about 2.5 Gb, 100,000 
well chosen markers will be more than adequate. Virtually any population, no matter how 
complex its genetic architecture can now be typed using the latest version of the mouse 
universal genotyping array (the GigaMUGA) or by sparse sequencing for about $100/case 
(Rat Genome Sequencing and Mapping Consortium et al. 2013).  

For selective genotyping of a handful of markers in DO or RCC F2 intercrosses you 
can use standard protocols that will probably require acquiring sets of PCR primers. 
Costs may be as high as $1/genotype/case. If you require a few hundred markers per case 
then a good ballpark cost for custom genotyping is $0.10–0.20 per genotype per case—or 
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$20–40 for 200 markers for an F2 progeny. Finally almost all inbred, RI strains, an RIX 
progeny are already well typed and there is no cost at all. 

Question 12: Is there a strong justification to use all of these types of resource—RIs, RIX 
and HS/DO? ANSWER: These resource types perform many of the same functions. 
However, G×E will be easier to study using RI and RIX. RIX progeny made using CC 
RIs are genetically similar to DO animals, but incorporate fewer recombinations per 
animal. Data from RIX cases can also be used to build up a phenome database and are 
potentially more useful for large collaborative teams, but this advantage may remain 
theoretical for the next several years. DO/HS animals are logistically far easier to obtain 
and provide you with access to the ultimate breadth of genetic and phenotypic diversity. 
They are the closest you can get to a wild-type mouse population short of capturing your 
own. If you results from Stages 1 to 3 are supported in DO populations, then you can be 
sure that results will have the maximum replicability and perhaps even translatability to 
human populations. You may also be able to computationally and genetically "extract" 
specific disease models from RI, CC, and DO stock.  

 
 

5. Future Directions and Conclusions 

Thanks to the massively reduced cost and increased scope of omics technologies, it is now 
feasible for small collaborative groups—and even single research groups—to execute large 
studies in systems genetics. We can anticipate this paradigm to continue, and even accelerate, 
in the coming years with the advent of new and improved methods of quantifying an 
individual’s proteomes, metabolomes, metagenomes, and epigenomes as a function of cell 
type, tissue, age, and state. It is great to have the core resources that are needed to take 
advantage of this rapidly expanding set of omics technologies.  

What we have not considered in this chapter is the analytic and synthetic tools needed for 
high-content systems genetics? How do we actually map aggregated data from 1000 cases 
with complex substructure? How do we build predictive models and test their fit to empirical 
data? These questions are taken up in many of the chapters in this volume.  
 

 

6. Notes 

1: What is population substructure and how does it make statistical analysis and mapping 
trickier? We all have learned that observations used in many statistical tests should be 
independent. In genetic crosses all F2 progeny are usually treated as independent 
observations. But what if there are strong litter effects, or batch confounds due to technical 
errors. These effects can introduce variance into a cross that can obscure the detection of the 
genuine effects and produce spurious linkage. Similarly, in an AI cross, one mating pair may 
produce 50 siblings whereas another mating pair produces only 5. In this case we have known 
and unbalanced pedigree substructure that needs to be corrected even when doing something 
as simple as computing a correlation coefficient. Large GWASs sometimes combine data 
from different ethnicities and it is also essential to correct statistically for the kinship relations 
among members. In some cases we can use the genotypes of cases to compute a matrix of 
kinship similarity, and use this matrix to correct for the population substructure. If we know 
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the litter and batch identifiers we can also adjust for these nuisance variables in a statistical 
model.  

In large RI sets such as the BXDs and CC, there is cryptic substructure that may not show 
up easily in genotypes but that that may still be important. The BXDs for example, were 
generated in multiple cohorts between 1970 and 2013 using the same parental strains—
C57BL/6J and DBA/2J, but of course, 43 years of breeding history will add many new 
variants to both parents and some of these are already well known to have important effects 
(Anderson et al. 2002, Wang et al. 2016). 

2: To estimate empirical precision for QTLs across a population in GeneNetwork 
(www.genenetwork.org) you first need to select an expression data set from the pull-down 
menu. In this example, select Species = Mouse, Group = B6D2 AI PSU, Type = Muscle 
mRNA, and Data Set = PSU B6D2 AI Muscle... 
Enter this query into the Get Any box: 

 cisLRS=(23 46 50)    

 where cisLRS is the linkage statistic specifically for the cis-acting eQTLs. The first two 
values in parentheses are the minimum and maximum LRS values to return (LRS = LOD x 
4.61), and the final number is the size in megabases of the acceptance window used to define 
how close a gene must be to the QTL peak to be considered cis-acting. In this case the 
acceptance window is very broad, and the peak LRS can be anywhere 50 Mb on either side of 
the gene.  

This search will generate 2086 hits. You can resort and download the results as an Excel 
table using the Download Table button. In this large AI intercross with more than 800 cases 
generated by Carbonetto and colleagues (2014) between C57B/6J x DBA/2J, the mean offset 
between 2000 cis-eQTLs with LOD between 5 and 10 and their genes is 7.0 ± 0.21 Mb.  

If you try precisely the same set of operations with a matched BXD Advanced RI data set 
(EPFL/LISP BXD CD+HFD...Exon Level) you will find that the mean offset between 4400 
cis-eQTL in this data set is 2.0 ± 0.06 Mb. This latter ARI data set is based on ~80 cases (1 
replicate of 40 strains under two conditions—high fat and standard chow diet (Williams et 
al., 2014). 

3. Genetic studies usually benefit more by increasing the n of genometypes that are phenotyped 
than by increasing the n of replicates per type (e.g., figure 1B in Andreux et al, 2012 and 
Belknap 1998). All else being equal, a studying of 160 types without replication should be 
superior in terms of QTL results to one of 40 strains and 4 replicates of each. This is obvious 
for Mendelian traits such as coat color, but it also holds true for quantitative traits—even 
those with low heritability. However, at an early stage of a study it is vital to understand 
heritability and technical confounds and in some cases, replication is easy and cheap. For this 
reason, it is a good idea to begin work with 6 to 8 replicates of a few "reference" genomes. 
When using isogenic cases we recommend two replicates minimum, one per sex. Bumping 
this up to two per sex per strain will improve the comfort level of many reviewers, although to 
keep them happy you will probably need 6–8 per group. There are also some good reason to 
study 6 or more cases per genometype even after heritability is known: such as studies of 
genetics control of variation itself (Rönnegård and Valdar 2011) or pharmacological effect 
thresholds.  

One way to think about the diminishing returns of high replication rates is to compare t 
scores and z scores required to achieve statistical significance for simple two-sample 
comparisons using different sample sizes. The z score assumes variance of the population is 
known and the critical value to reject the null at alpha 0.05 is z = 1.96. In contrast, the t score 
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estimates variance from the sample itself, and the critical values start at a woefully high 12.71 
for n = 2, but drops toward the asymptote of 1.96 very quickly: 3.182 for n = 4, 2.757 for n = 
6, and 2.201 for n = 12.  
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