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Summary

The goal of systems genetics is to understand the impact of genetic variation across all levels of biological organization, from

mRNAs, proteins, and metabolites, to higher order physiological and behavioral traits. This approach requires the

accumulation and integration of many types of data, and also requires the use of many types of statistical tools to extract

relevant patterns of covariation and causal relations as a function of genetics, environment, stage, and treatment. In this

protocol we explain how to use the GeneNetwork web service, a powerful and free online resource for systems genetics. We

provide workflows and methods to navigate massive multiscalar data sets and we explain how to use an extensive systems

genetics toolkit for analysis and synthesis. Finally, we provide two detailed case studies that take advantage of human and

mouse cohorts to evaluate linkage between gene variants, addiction, and aging.

1. Introduction

GeneNetwork (www.genenetwork.org, GN) is a web service for systems genetics. It
started in 2001 as WebQTL—an online version of Ken Manly's Map Manager QT
program [1] combined with data sets in the Portble Dictionary of the Mouse Genome
[2]. GN is a data repository and analytic platform for systems genetics that integrates
large and diverse molecular and phenotype data sets. Just over 1000 papers listed in
Google Scholar have used GN in many different ways.

GN was initially used as a traditional forward genetics tool to map quantitative
trait loci (QTLs) and expression QTLs (eQTLs) in sets of recombinant inbred (RI)
strains and standard genetic test crosses, including F2 intercrosses and backcrosses [3].
As the number and variety of data types grew it became practical to implement
multivariate type analysis in GN-—namely, the genetic covariation among large
numbers of phenotypes [4-6]. This kind of assembly, analysis, and integration of sets of
phenotypes and even entire phenomes is a hallmark of systems genetics and is the
forerunner and experimental companion of personalized health genomics and precision
medicine. Thanks to recent breakthroughs in sequencing technology, GN can now also
be used for novel reverse genetics approaches such as phenome-wide association studies
(PheWAS). In a typical reverse genetics approach, gene function is determined through
manipulation, either by gene deletion (knockout), addition of altered sequence (knock-
in), silencing (RNA interference or RNAI), or gene editing (e.g. clustered regularly-
interspaced short palindromic repeats or CRISPRs). Similar to these more traditional
approaches, a PheWAS begins with known genes and sequence variants and then tracks
down sets of linked biomarkers and phenotypic consequences [7-9].

At its most basic level, GN is a tool for studying covariation and causal
connections among traits and DNA variants. This sounds simple enough, but it can be
challenging to know how to get started and how to navigate and use the many program
modules and options. Here we provide detailed instructions for using GN along with
“worked” examples and some test questions (and answers) that should ease entry into
this resource. All examples and figures were taken from the production version 1 of GN
(late 2015). While the interface may change in the next few years (GN version 2,
GN2), all of the logic, data types, and procedures described here will still be applicable.

The potential scope of GN analysis tools is broad—well organized collections of
genetic, genomic, and trait data from different species can be integrated easily—either



as private or open data. At this point GN includes curated data sets for a variety of
model organisms and plant species, including humans, monkeys, rodents, Drosophila,
and Arabidopsis, soy, and barley. Data are usually open and exportable, and data
typically include information for hundreds to thousands of individuals with matched
genotypes for thousands to millions of markers (usually SNPs), array or RNA-
sequencing (RNA-seq) data for tens of thousands of transcripts, and in a growing
number of cases, proteomic, metabolomic, metagenomic, behavioral, and
morphological data.

Massive omics data sets are unwieldy to access, normalize, and analyze. Even those
skilled in bioinformatics spend more than half of their time simply wrangling,
reformatting, and error checking data sets to match the requirements of different
workflows. GN spares the user most of these problem. Data are formartted and
normalized, and usually come with good metadata (often in the form of links to more
information). This greatly simplifies QTL and e¢QTL analysis, candidate gene
discovery, coexpression analysis, and hypothesis testing [3,10]. The GN rtoolkit
includes many search functions, tools to study correlation and partial correlation,
multiple QTL mapping methods (including R/qtl, PLINK, and GEMMA, and FaST-
LMM in GN2), and powerful dimension-reduction techniques (principle component
analysis and weighted gene coexpression analysis), network construction, enrichment
analysis, variant analysis, and links to key informatics resources such as NCBI
(www.ncbi.nlm.nih.gov), the UCSC Genome Browser (genome.ucsc.edu), BioGPS
(biogps.org), the GWAS Catalog (www.ebi.ac.uk), Gemma (www.chibi.ubc.ca), the
Allen Brain Atlas (www.brain-map.org), and GeneWeaver (GeneWeaver.org).

In this chapter we introduce the basic architecture of GN (section 2) and work
through two detailed cases studies (sections 4.1 and 4.2) that analyze both mouse
and human data sets. We also explain how GN links to other web sites that provide
complementary resources and analysis tools (section 3). Throughout the chapter we
provide a series of questions that can be used to test your proficiency. Answers are
provided at the end of the protocol in the Notes section. Both Case Study 4.1 and
4.2 provide detailed protocols needed to exploit GN data resources and to test specific
hypotheses. Work through both of these examples and use the notes to gain an
excellent understanding of the range of applications and types of questions that can be
addressed and often answered using a systems genetics approach.

2. Organization

The first challenge in using GN is to locate cohorts (groups of subjects or samples)
and associated data sets. The hierarchical organization of GN’s main Select and
Search menu is simple and makes it relatively easy to find relevant data sets (Fig. 1).
To get data, after opening the browser, select the most appropriate Species from the
dropdown menu. For an open-ended search of phenotypes you can also select All
Species at the bottom of the menu. The next steps are to select the Group, Type,
and Data Set from the drop-down menus. For many groups, a combination of
phenotypes, genotypes, and molecular data are available. This makes it possible to
perform QTL mapping and the analysis of trait and gene covariation. Table 1
provides a sample of human and rodent data sets that are amenable to these types of
analyses.

As a navigation aid in this protocol, all active links in GN (buttons and linked
text) and all data that you type into search fields such as Get Any are displayed
using bold italic font. In contrast, page names, titles, column headers, and static
menu items are displayed using bold font.
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2.1. Types of Data

Almost all human data sets in GN include gene expression measurements (Table 1).
In addition, several data sets also include genotypes and can therefore also be used
for eQTL analyses. Examples include all of the human GTEx data sets and several
human brain and liver expression data sets: Brain, Aging: AD, Normal Gene
Expression with Genotypes (Myers) and Liver: Normal Gene Expression with Genotypes
(Merck) (Table 1). Concerns about subject confidentiality sometimes limit the
amount of data available for human cohorts. Non-human cohorts, such as rodent
populations, do not suffer from these restrictions and often contain more levels of
data (Table 1). The rodent cohort with the most extensive data collection is
currently the BXD family of strains derived from a cross between C57BL/6] (B)
and DBA/2J (D) [11]. Inbred panels and RI strains represent stable populations
that allow for deep resampling of individual genotypes and the accumulation of
many different levels of data over time, and across laboratories and research
communities enabling replication of research and the study of the pleiotropic
actions of variants. The BXD set, for example, includes a wide variety of trait
measurements collected over the last four decades [12]. Other populations
commonly used for quantitative genetics and systems genetics include F2
intercrosses and outbred populations such as heterogeneous stock (HS) mice. For
most F2, outbred, and human populations, each individual is truly unique and
collecting multiple levels of data and studying gene-by-environmental (GXE)
interactions and lab-to-lab replication is usually not practical.

2.2. Starting an Analysis

The main GN search page and an overview of a typical workflow are shown in
Figure 2. Data sets are selected based on Species, Group, and Type (Fig. 1).
Detailed information and metadata can often be reached by clicking the Info
buttons to the left (Fig. 2). Data Sets are queried using either Get Any or the
Combined options. Searching with Get Any performs matches to entered text using
the logical OR operator. For example, if the term “alcobol ethanol’ is entered into
Species = Mouse, Group = BXD, Type = Phenotypes, and Data Set = BXD
Published Phenotypes, then the search will return all matches for “alcohol” or for
“ethanol’ (>500 results). In contrast a search for "alohol consumption” in the
Combined search option (Fig. 2B) uses the logical AND operation and generates
far fewer results. Very long lists of gene symbols or probe set IDs—a thousand or
more—will fit into these search boxes.

To get started, experiment with the Quick HELP Examples located just below
the Combined search option (Fig. 2, center). Test whether you can find all genes
on human chromosome (Chr) 21 that have high expression (>4.0 log; RPKM) in
the frontal cortex (see Note 1). Search queries are dependent on the Data Set type.
For example, genotype data sets can be searched by marker name or marker
position; phenotype data sets can be searched by phenotype description or authors'
names; gene and protein expression data sets can be searched based on expression
level, gene location, gene symbol, a Gene Ontology category (GO), or even by
NCBI Gene Reference into Function (GeneRIF) text string.

To compare and improve compatibility across data sets, most array data have
been log, transformed and rescaled to an average of 8 and a standard deviation of *
2 units. This is true of Affymetrix and Illumina array data. However, Agilent data
report gene expression as the logio of the ratio between a specific tissue compared
against a reference pool of multiple tissues (mlratio). RNA-seq data is usually
normalized to log, (RPKM + 1).

Many of GN data sets can be searched for traits or transcripts based on QTL
position and significance levels (LRS or LOD score). Transcripts or proteins that



are controlled by variants in or near their parent gene produce so-called cis-acting
expression QTLs (cis eQTLs) whereas those that are controlled by a more distant
locus, usually on a different chromosome, produce trans-acting QTLs (trans
eQTLs) (Fig. 3). Test whether you can find a set of proteins in the mouse liver that
are strongly controlled by trans eQTLs (see Note 2).

2.3. Create a Trait Collection

Once you have selected a Data Set and submitted a search, results will appear in a
Search Results page (Fig. 2C and Fig. 4). From this page, select the individual
traits, transcripts, or gene markers for additional analysis by adding them to a Trait
Collection (Fig. 2D). Do this from the Search Results page either by selecting all
rows with the Select icon (Fig. 4A) or by selecting a subset of rows with the Add
icon (Fig. 4B). Trait collections are usually restricted to a single species and group.
Comparisons across groups and species are possible, but in most cases this involves
assembling several Trait Collections—one for each group.

From either Search Results or from a Trait Collection (Fig. 5) you can inspect
traits in greater detail by clicking on their Record ID or Trait ID. This will direct
you to the Trait Data and Analysis page (Fig. 6), which contains links to other web
resources and GN tools.

The GN banner Search pull-down lists additional options, each of which is
reviewed briefly below (Fig. 2E). Search Databases and Trait Collections are simply
navigations aids to quickly get back to these two pages.

Tissue Correlation computes correlations of gene expression level across sets of 26
different tissues or 32 different brain regions from inbred (isogenic) strains of mice.
Variation in expression is purely due to differences among cell and organ systems
rather than being due to genetic or environmental factors. The output tables and
graphs are particularly useful when studying genes with minimal annotation or
when testing the hypothesis that expression of two or more genes are jointly
regulated across tissues.

SNP Browser, Interval Analyst, QT Lminer all provide three different ways to
screen for genes and gene variants within defined genomic regions—but currently
only for the mouse genome. QT Lminer is the most comprehensive of the three
tools, and takes advantage of the many levels of data available in GN. This tool can
provide output tables that includes many types of QTL information, data on gene
expression, and genetic variation across multiple mouse groups [13].

GeneWiki allows anyone to add notes on genes, transcripts, or proteins to GN.
It is essentially an open public notepad with good search functions. GeneWiki
incorporates current NCBI GeneRIF annotations.

GenomeGraph provides a way to review global genetic modulation for many
gene expression data sets. This tool plots the physical position of each gene against
the position of the highest linkage score for the corresponding transcript or probe
(this function is not yet available for human data sets). GenomeGraph provides two
complementary overviews (see the tabs) of the distribution of cis- and trans-eQTLs.
One of these is suitable for figures, while the other is interactive and enables
zooming and clicking on individual transcript/marker coordinates. The
GenomeGraph is used to detect both the cis-acting ¢QTLs and prominent trans
eQTL bands—loci that modulate the expression of large numbers of transcripts or
proteins [14]. Can you use this tool to check for trans eQTL bands in mouse liver
(see Note 3)?

Scriptable Interface is a more complex option that enables direct queries of GN
databases using a set of keywords and commands—an application programming
interface (API) that can be used to link one web resource with another. It is possible
to access or download data and tools using R, Python or other code and scripts. The
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API consists of a query that returns results in a JSON format that is easily loaded
locally. The R/qtl package, for example, can read GN REST API data by default.

Examples of such functionality are:
1. Fetch all genotype data belonging to a cross or sample.
2. Fetch all phenotype data belonging to an experiment or population.
3. Get the genome scan results for a particular phenotype.
4. Get a list of phenotype correlates and their correlations.
5. Get a list of phenotypes with a QTL in a given interval.
6. Get a list of genes matching a QTL in a given interval.

The final three pull-down items—Database Information, Data Sharing, and
Annotations—provide documentation and download tools.

In addition there are several useful resources available under the Help tab in the
banner menu (Fig. 2E). Useful guides and tutorials outlining how to use the GN
web resource can be accessed under the Mowies, Tutorials, and HTML Tour
options. Extremely useful explanations to frequently asked questions and for terms
and tools used in GN can be found in the FAQ and Glossary of Terms. The glossary
has been hand curated since the inception of GN and is a great companion guide for
all new users.

3. The GeneNetwork Toolbox

Now that you are familiar with the organization of data and typical search
workflows, we can introduce resources available for trait analysis in the extensive
GN toolbox. We will explore these tools first at the level of a single trait, and then
at the level of multiple traits.

3.1. Tools for single trait analysis

The Trait Data and Analysis page is key to using GN and includes many useful
tools for studying single traits (Fig. 6). Options differ by data type and species. A
trait such as body weight has very different Resource Links than mRNA, protein,
metabolite, and genotype data. Most data sets that include transcript or protein
assay measurements include links to resources that provide information about
function, homology, expression across tissues, and genomic location. These include
Gene pages at NCBI, OMIM, HomoloGene, UCSC Genome Browser, and BioGPS.
Other links are focused on protein structure and function, including STRING,
PANTHER, and Wiki-PI. Gemma and ABA provide access and analysis of
thousands of transcriptome and iz sifu expression data sets, respectively. EBI GWAS
searches human genome-wide association studies for matches to selected transcripts
or proteins.

The row of icons labeled Add, Find, Verify, GeneWiki etc. link to large GN
database resources. The A4dd icon is used to build up collections of traits for network
analysis in a Trait Collection. Find locates similar expression traits in other data sets
and other species. GeneWiki provides a summary of gene and protein function based
on notes made by GN users and published data. It is simple to add your own notes
to GN by selecting GeneWiki and then New GeneWiki Entry. SNPs links to a
Variant Browser that is identical to the SNP Browser accessed from the GN banner
under the Search tab. Verify, RNA-seq, and Probes provide quality control



information about transcripts and peptides. Both Verify and RNA-seq link to GN
mirrors of the Genome Browser.

The Verify and RNA-seq tools uses the transcript, peptide or probe sequence to
align against the reference genome. The BLAT reanalysis results and annotations at
the top of the Trait Data and Analysis page should match, but mismatches are
frequent and arise from poor annotation, poor sequence selection, or ambiguous
alignment. The RNA-seq tool performs the same type of BLAT alignment but
includes tracks with data on all genomic variants segregating between the parents of
the BXD mouse cohort [15], and expression profiles from whole brain [7] and
striatum [16] generated by RNA-seq. Sequence variants are displayed in the
DBA/2J Sequence and Structural Variation track and RNA-seq data from brain
(B, D, and BXD strains) and striatum (B and D strains) are displayed in the RNA-
seq: Brain (BR) ABI, N tags/nt, adjusted track and the RNA-seq: Striatum (STR)
ILM, N tags/nt, adjusted track, respectively. These data are useful for visualizing
variants within genes that may affect expression, and can also be used to determine
whether variants overlap probe sequences. Array platforms have all been designed
based on the genome of a single reference genome (C57BL/6] in the case of mice,
Brown-Norway in the case of rats). The use of a single genome for design purposes
can result in biased hybridization in array studies and biased alignment in RNA-seq
studies [17]. The RNA-seq data is also useful for validating expression differences
detected using array platforms. The related Probes tool is useful only for Affymetrix
data sets and is used to evaluate the performance of individual array probes.

3.2. Analysis and mapping methods for single trait analysis
The lower set of four panels (Fig. 6C) on the Trait Data and Analysis page include
the core computational functions of GN—Basic Statistics, Calculate Correlations,
Mapping Tools, and Review and Edit Data.

Basic Statistics is used to summarize statistical properties of single (univariate)
traits. Open this section (click on the bar) and select the Basic Table tab or
Probability Plot or Bar Graph tabs. These options are reviewed below in detail in
Case Studies 4.1 and 4.2.

Calculate Correlations is used to compute the bivariate correlations between
the reference trait and any other set of traits that has been measured in the same
Group. Open this section and select a target Database, the number of correlations
to Return (default is top 500, but the range is between 100 and 20,000), and the
method of correlation—Pearson or Spearman Rank. Note the tabs: GN can
compute three types of correlation—Sample r, Literature r, and Tissue r. Sample r
does what you expect. It computes correlations using values listed at the bottom of
the page. Literature r computes correlations between genes based on their shared
vocabularies in PubMed. The same method is applied when using the GCAT tool
(http://binfl.mempbhis.edu/gcat/help.html, [18]). Finally, Tissue r computes
correlations based on variation in expression of genes across about 30 tissues and

organs in mouse (identical to the Tissue Correlation tool). All correlation output
results are displayed in a Correlation Table. Any of the rows in these tables can be
evaluated in their own Trait Data and Analysis page by selecting the Record ID, or
large sets of rows and covariates can be analyzed as a group using tools at the top of
Correlation Table page. Use either the Index check boxes or the Select, Deselect,
Invert, and Add icons to move traits into a collection.

Mapping Tools includes a number of on-line “live” QTL mapping methods.
The association function in PLINK is currently the default for human GWAS.
Interval mapping is the default for almost all plant and non-human cohorts.
Interval mapping exploits Haley-Knott regression equations to evaluate the linkage
across all autosomes and chromosome (Chr) X. Linkage is displayed either as a
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likelihood ratio statistic (LRS) or the log of the odds ratio (LOD). Both scores
provide an estimate of the statistical strength of linkage and the LRS is derived
from the LOD score by multiplying by 4.61. A linkage probability of 0.001 is
roughly equivalent to a LOD of 3 and an LRS of 13.8. Genome-wide association
studies (GWAS) in humans often use a —logio(P) value where P is the probability of
linkage between differences in genotype and differences in trait or disease severity.

Mapping Tools also include Marker Regression, a very simple method that
computes statistics only for individual marker genotypes. Composite interval
mapping (Composite) is a variant of simple interval mapping that enables control for
one or more other markers. It is equivalent to mapping the results of a partial
correlation. Pair-Scan is an experimental mapping option implemented for larger RI
sets (samples of 50 or more strains) that searches for epistatic interactions among
loci.

Review and Edit Data contains a working copy of the trait values for each case.
Outliers, if any, are highlighted in yellow. Users can manually change trait values,
select subsets of individuals for further analysis, exclude outlier values, export values
for analysis offline, or reset to the original values.

3.3. Tools for multiple trait analysis

A key feature of GN is access to several different levels of data that all originate
from well defined groups of subjects or cases. The levels can range from genotypes
to behavior, but can also include different treatments, developmental stages or
laboratory settings. Users can assemble computationally coherent collections of
traits to explore joint gene control, gene-by-treatment, gene-by-lab, and gene-by-
environmental interactions. Users may want to examine expression for a single gene,
gene families, or members of a biological pathway across multiple tissues. To
accomplish these tasks it is necessary to find the data types and then assemble them
into a single collection. This is done using the Search Results page, the Trait Data
and Analysis page, and several other tables generated by tools in GN, particularly
Correlation Tables. Once these multiscalar data sets have been assembled, a
number of new tools are available for joint analysis from the Trait Collection (Fig.
4). Basic actions are similar to those found in the Search Results page, including
Select, Deselect, and Inwvert. Other actions include Remove and Export.

Analysis tools that are optimized for large collections of genes and proteins
include Gene Weaver, GCAT, Gene Set analysis (WebGestalt), and BNW (Bayesian
Network Webserver). GCAT uses text mining to determine if a list is functionally
coherent and related based on the literature [18]. Gene Set searches for significant
enrichment based on GO categories (functional annotations describing gene
function or location) and Graph, Matrix, Partial, and Compare are tools that
leverage correlations to identify patterns and relations among traits. The Graph tool
is used to construct and visualize correlation networks from selected traits. The lines
or edges connecting trait nodes can be filtered and exported to the open source
Cytoscape software platform or graph images can be reconfigured and saved as a
PDF. Matrix generates correlation matrices from any number of traits using both
Pearson and Spearman coefficients. Scatter plots can be generated for each pairwise
comparison. Principal component analysis (PCA), a data reduction and pattern
detection technique, is also performed and eigenvectors are generated for the
principal components that capture the majority of the variation in expression of
selected traits. Eigenvector values can be added to the Trait Collection and are
handled by GN in the same way as other traits. The pattern of expression captured
across cases by each eigenvector trait can be used for mapping, to find additional
correlates, or to check for technical artifacts.



The Partial correlation tool computes correlation between traits after
controlling for other traits, markers, or cofactors such as age or sex. Partial
correlations can be calculated for a subset of traits in a Trait Collection or against
an entire data set. Select at least one Primary trait (X), one or more Target traits
(Y), and a set of Control traits (Z). Again you have the option of computing either
Pearson’s r or Spearman’s rho partial correlations.

The final correlation tool is Compare. This tool is used to identify intersecting
sets of traits across data sets from the same Group that are correlated with selected
traits in the Trait Collection based on a user defined threshold. It will essentially
compute the intersecting values of a Venn diagram using 2 to 20 or more variables
in the collection.

Tools for exploring the genetic control and mapping of multiple traits from the
same collection include QTL Map and Hear Map. The QTL Map tool allows users
to compare QTLs for up to ten traits globally or by single chromosome. This tool is
useful to visually explore traits that may be modulated by the same chromosomal
position. The Heat Map tool is used to compare global patterns of genetic
modulation for up to 500 traits at a time. Individual traits are represented by
columns with genomic position shown by row. Significant QTLs are indicated for
each trait as intense blue or red bands depending on whether expression is increased
by the maternal or paternal allele (blue and red respectively for the BXD RI set).

The tools available for individual or multiple trait analysis in GN are designed
for users to explore data sets and detect relations among traits that are driven by
genetic and non-genetic factors. The underlying genetic variants responsible for
some of these associations and their potential impact on higher-order phenotypic
variation can then be evaluated. We provide two case studies below that put these
tools and data sets into context, and that illustrate how they can be used in a
systems genetics approach.

4. Case Studies and Workflows

In this section we have provided case studies for both mouse and human data sets
that illustrate the utility of GN. Other case and use studies can be found in this
book and other publications [19].

4.1. Mouse Case Study

The BXD family of strains and their parents—C57BL/6] (B) and DBA/2] (D)—
differ greatly in their preference and sensitivity to alcohol and many other drugs. As
a result, the BXDs have been used as a genetic model system to map loci and define
gene variants that may be involved in addiction. Using data and tools in GN we can
ask whether there are any gene variants associated with addiction and whether gene
expression varies as a function of strain and genotype. We can also test the possible
causes and consequences of variation in gene sequence and gene expression. This
case study takes you through the main steps in this process.

1. Navigate to the Select and Search page at www.genenetwork.org.

2. Choose an expression database by picking the following options. Species
Mouse, Group = BXD, Type = Hippocampus mRNA, Data Set
Hippocampus Consortium M430v2 (Jun06) RMA (the third data set in this

menu). For this example we will use an Affymetrix hippocampus expression

data set that uses the RMA normalization method. This is the most commonly
used normalization method for Affymetrix arrays and is therefore the best
choice for comparing across tissue and even species data sets. The hippocampus
is one of many brain regions important for episodic memory formation and
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spatial navigation. It is also particularly sensitive to many types of
environmental and pharmacological perturbations. For more information
(metadata) about how this and other data sets were generated, click the Info
button to the right of the data set name.

Search for genes. Enter the following search string in the Combined option:
"Mean=(8 16) cisLRS=(10 99 10) RIF=addiction" (remove the double quotes).
This search will return all transcripts (in this case also called probe sets) that
have a mean log, expression between 8 and 16 units and whose expression is
modulated by a cis-acting eQTL with an LRS between 10 and 99 that have
also been linked to addiction. By using the Combined search field, all three
components of the query have been combined automatically using a Boolean
AND operator. The first component—>Mean=(8 16)—limits the search to
transcripts that have moderate to very high expression level. Eight is the average
log, expression level for most array expression data sets in GN while 16 is very
high. Typically, a trait with an average log, expression value less than 6 is not
considered expressed.

The second component of the query—cisLRS=(10 999 10)—limits the
search to those transcripts associated with a cis eQTL LRS value between 10
and 99. An LRS score of 10 corresponds to a LOD of 2.2 and is roughly
associated with a nominal (point-wise) p value of 0.01. Similarly, an LRS of 99
is equivalent to a LOD of 21.5. The third parameter (also 10) included in the
query limits how far the eQTL location can be from the corresponding gene
associated with the mRNA. In this case we set a 10 Mb exclusion limit. Finally,
the third query term—RIF=addiction—limits the search to genes that have been
annotated with the term “addiction” in NCBI GeneRif collection.

Click on the Search button to explore the results of this query. The search
returns 31 records (November 2015). The Symbol and Description columns
provide the gene symbol and full name. The Record ID column gives the
probe, exon, or transcript ID that has been used to measure expression. The
particular part of the mRNA that is the target of the assay is often listed in the
Description column after the gene name (e.g., "distal 3' UTR)". Gene location
is given in the Location Chr and Mb column, whereas the location of highest
LRS associated with the trait is given in the Max LRS Location Chr and Mb
column. The last Add column lists the additive effect of alleles at the Max LRS
Location. In this case, the positive and negative values of Add indicate that
expression is increased by the paternal (D) or maternal (B) allele, respectively.
All of these Search Result columns can be sorted. Initially the list is sorted
alphabetically by Symbol but can also be sorted by probe set genomic location
(Location Chr and Mb) or by eQTL strength (Max LRS). The top 10 unique
genes sorted by Max LRS include R41, Csnkle, Cntnap2, Cdknlb, Mpdz,
Grial, Comt, Gabra2, Kcnj3, and Sicl1a2. Select all and then click Add to move
all of the search results into a BXD Trait Collection for further analysis.

To study the expression of the R41 transcript in greater detail, select its Record
ID or Trait ID (1417850_at#) to navigate to the Trait Data and Analysis page
(Fig. 7). Each trait can be examined in more detail in this manner, whether it
is a transcript, peptide, metabolite, genotype, or behavioral trait. There are a
number of tools for single trait analysis on the Trait Data and Analysis page.
We now will take you through many of these in the next few steps.

Examine the expression of R41 across all of the BXD family members included
in the data set using the Basic Statistics track. Expand the track by clicking the
“+” symbol or in the gray bar. Under the Include drop-down menu select “BXD
Only”. The Basic Table provides simple univariate statistics such as N of
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Samples, Mean, and Range. This particular data set includes 71 samples with a
Range (fold) of 2.34 fold on this log; scale.

The Probability Plot tab is a critical tool for detecting outliers and for
reviewing the distribution of trait values. If the distribution is close to normal
then the observed Trait values on the Y-axis will line up well with the Expected
Z scores on the X-axis. Deviations from the expected straight line of
normality—an S-shape, a set of abrupt breaks (as here), or a set of ripples—
indicate that one or more large effects may be influencing the distribution. A
strong QTL or a sex difference can produce such effects. For an example of a
sex effect (and potential confounder), review the expression of the Xist gene
(probe set 1436936_s_at).

Another means to visualize data distributions are with Bar Graph (by rank)
and Bar Graph (by name). By selecting Bar Graph (by rank) you can see that
expression of R&I is reasonably close to expectation (a normal distribution),
although there are two or three small breaks. This could indicate the presence
of one or more loci that have a modest impact on expression and that are
segregating among the BXD family members. In this case there are no outliers.

Had outliers been detected it would have been necessary to handle them in
the Review and Edit Data section toward the bottom of the page. This part of
the Trait Data page contains a working copy of the data values. Values can be
deleted or blocked with an X. Data can be modified, winsorized, or truncated to
make them less extreme. Even a single outlier can have a very adverse impact on
genetic mapping—often increasing the risk of false-positive QTLs and
producing Pearson correlations that are inflated. The original values can be
Reset or downloaded using the Export function.

. Perform QTL mapping using the Mapping Tools track, below the basic

statistics and calculate correlations tracks. Very fast interval mapping is a
powerful feature of GN that makes it possible to carry out complex trait analysis
of most cohorts in real time. Click on the Compute button under the Interval
tab using the default options. We already noted that the distribution of R&1
expression had some breaks. We can now explore possible causes of these
disruptions to the expected normal distribution by mapping trait variance.

The results of whole genome interval mapping are displayed as a graphical
map with chromosome number and megabase position displayed at the top and
bottom of the map, respectively. You can change to a genetic map measured in
centimorgans (cM), but this is rarely useful when a physical map is available.
The LRS linkage score is displayed on the left Y-axis. Blue, red and green lines
plot the LRS, the additive coefficient for the B allele (inherited by roughly half
of the strains from C57BL/6]) and D allele across the genome, respectively.
The horizontal red and grey lines show the threshold for significant and
suggestive linkage scores based on mapping 5000 permutations (see the
Histogram of Permutation Test). A permutation is simply the random
rearrangement of elements in an ordered list (in this case a list of genotypes and
associated trait values). A permutation test is a method for evaluating statistical
significance by randomly reshuffling and recomputing scores for list elements.
To achieve a significance of p = 0.05, the original association score between
genotype and trait expression must be greater than at least 95% of all permuted
associations. All of these calculations, including the default 5001 genome scans,
and the display, usually take less than a minute to generate.

The visual display of the graph can be altered by changing the attributes in
the box above the graph. Note the purple arrowhead at the bottom of the X-
axis that indicates the position of the cognate gene. Here we see strong and
highly significant linkage between expression of R41 and a locus on Chr 14 that
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overlaps the physical location of the R4 gene, a cis eQTL. Change the units to
LOD in the attribute box above the map and click on the Chr 14 icon to zoom
in and replot the map using a LOD score scale.

To look at the relationship between gene expression, genotype, and the
segregation pattern of parental alleles in greater detail, check the Haplotype
Analyst box and change the View to 70 to 80 Mb in the attributes box and then
select Remap. This will zoom in and show the pattern of inheritance for each
BXD strain with the location of gene models shown at the top of the plot
followed by a map of the chromosome for each strain (strain name to the right)
and the corresponding trait value sorted from highest to lowest (value to the
right of the strain name). The vertical black lines represent the location of
genotyped markers that reveal whether that position in the genome was
inherited from the maternal or paternal strain (the corresponding marker names
are shown at the bottom of the chromosome map). Similar genotypes across a
set of adjacent markers define a haplotype and are represented here as large
blocks of green (inherited from the paternal strain) and red (inherited from the
maternal strain) with intervening undefined grey regions. Somewhere within
the grey interval a recombination event occurred and more markers will be
needed to resolve the haplotype blocks more completely. Blue areas are or were
heterozygous when the strains were genotyped last. You may have already
noticed the striking segregation of green haplotype blocks at the top and red
haplotype blocks to the bottom of the chromosome map. Parental alleles at this
locus are strongly associated with expression variation and this can be seen here
as BXD strains that have inherited the paternal D allele (in green) have high
expression of R41 and those strains that have inherited the maternal B a/lele (in
red) have lower expression (expression values shown for each strain at the far
right).

It is often useful to define a confidence interval in which the candidate
variant or gene driving trait variation is likely to be located based on the
mapping results. One rough estimate of the confidence interval is the 1.5 LOD
drop-off which is defined as the interval bordered to the left and right of the
peak QTL in which the LOD score (represented by the blue line) drops by 1.5
LOD units. In this example, that would be the point on the blue line to the left
and right of the peak that represents a value of 15.5 LOD. This can be roughly
approximated visually from the graph such that the 1.5 LOD confidence
interval defining the cis eQTL is roughly between 73 and 75 Mb on Chr 14.

To view the precise association score for any single marker and the
corresponding chromosomal position, click the ‘Download result in a tab-
delimited text formaf link toward the top left side of the Map Viewer page.
Note that the peak marker is rs3701623 located on Chr 14 at 73.597 Mb. To
estimate the amount of trait variance that is genetic and captured by this single
QTL, navigate back to the main GN Select and Search page (use the Search
Databases option under the Search dropdown in the banner or click on
GeneNetwork in the top left corner of the browser window). Enter the marker
‘rs3701623’ using the Get Any query under Group = BXD, Type = Genotypes,
Data Set = BXD Genotypes and select Search. This query will return
information about genotypes at this marker. Select the marker and A4dd it to the
Trait Collection. The collection should now contain all 31 genes from the
previous search results and the marker rs3701623. Select the marker and the
Rb1 probe set, and then choose the Matzrix tool. We will learn more about the
matrix tool later, but for now we have just generated the Pearson (left value) and
Spearman Rank (right value) correlation coefficient for our expression trait and
marker. The Pearson 7 is 0.83 and the corresponding 7* is ~0.7. In other words,
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about 70% of the variation in hippocampal R41 expression among BXD strains
is explained by a cis eQTL.

Verify that R41 is linked in to addiction or substance abuse in GeneWiki. Rb1 is
a tumor suppressor with high expression in hippocampus. But is there a link to
addiction of the type we expect? From the Wiki pages perform a search for the
work “addiction”. This will highlight entry 276. However, R41 is linked to
addiction in a different context: the acute need of cells for Myc expression to
survive. Try this using another gene from the original list—Cdkn1b (see Note
4).

As shown above, quality control is critical. Both the Verify and the RNA-seq
tools on the Trait Data and Analysis page are used to confirm the correct
identity of probe sequences and detect possible problems associated with local
sequence variants. Probe set 1450486_a_at (Opr/1) is a good example of how
sequence variants can interfere with expression measurements. Select Opr/1
probe set 1450486_a_at from the Trait Collection and link to the
corresponding Trait Data and Analysis page.

Confirm involvement of this gene in addiction by clicking the GeneWiki
link and performing the same analysis as in Step 8. Note that the term
“addiction” appears in three separate GeneRIF entries. From the Trait Data
and Analysis page perform quality control by selecting the RNA-seq tool. This
tool is similar to Verify in that it uses UCSC BLAT to align the probe set to
the reference genome. The BLAT Search Results page (Fig. 8) summarizes
alignment scores. Click on the far left srowser link of the top row.

The RNA-seq browser page displays many tracks (Fig. 8 bottom). These
include the alignment of the 11 probes (black rectangles), the region of the gene
targeted by the probes (the 3° UTR, exons, or in rare cases, the introns),
DBA/2]J sequence variants, and RNA-seq expression measurements. Confirm
that the probes target the right gene (Opr/I) and determine if any variants
overlap probes and might interfere with expression measurements (Fig. 8).

Note that the probe set targets Opr/l correctly. However, several probes
overlap SNPs (probes 299709 452573; Fig. 8). These SNPs could impact
measurements of expression in strains that inherit the D allele. To check
whether or not expression differs between probes that overlap SNPs, use the
Probes tool in the Trait Data and Analysis page for Opril (probe set
1450486_a_at). Affymetrix microarrays feature multiple probes whose
expression is then summarized to get a measure of cognate gene expression.
The Probes tool allows you to explore individual probe expression, genetic
mapping, and covariation. In the case of the M430 array used here, expression
is based on hybridization of 11 perfect match (PM) and 11 mismatch (MM)
probes (Fig. 9). Use the Select PM button to select the perfect match probes and
then select the Hear Map icon to look at the eQTL profile for all 11 probes
(Fig. 9). The heat map shows the location and strength of eQTLs for each
probe. A strong cis eQTL indicating higher expression in BXD strains that
have inherited the B allele of Opr/1 (blue, Fig. 9) is only associated with probes
overlapping SNPs (299709 and 452573). The strong cis eQTL detected for
Opri1 is actually a technical artifact caused by sequence variants that disrupt the
hybridization of probes to their target RNA sequence in strains other than
those with the reference B haplotype. When exploring eQTLs it is good
practice to determine: (1) That the assay targets the right genes, and (2)
Whether or not measurements might be impacted by sequence variants. Try
this analysis on Kcnj3, probe set 1455374 _at (see Note 5).

Thus far we have searched and returned a list of genes whose expression is
likely modulated by local sequence variants segregating in the BXD cohort that
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may play a role in addiction. We identified two genes (R41 and Opr/I) whose
presence on the list is due to different types of technical errors. What about the
remaining genes? Are these genes connected in any other way?

10. Select the top nine genes from our Search Results page (1417176_at,
1434045_at, 1422798 _at, 1418664 _at, 1448972 _at, 1449183_at, 1421738 _at,
1439940_at, 1437920_at, 1421202_at) and Add them to the Trait Collection
(Fig. 10).

We can now explore whether these traits are connected at the level of
genetic regulation or gene expression. Select all traits and then select the Mazrix
tool. The output is a correlation matrix comprised of pair-wise correlations for
each selected probe set (Fig. 11) and the results of a PCA that will be described
below (Fig. 12). From the correlation matrix at the top of the page, we can
explore whether the expression of these traits are correlated in the hippocampus
of 71 BXD strains. With this number of individuals, a correlation of ~ |0.3] will
be significant at a p-value less than 0.01, however, only correlation coefficients
greater than |0.5] are highlighted in the matrix. For each pair-wise correlation,
it is possible to generate a scatterplot that also displays the associated p-value by
clicking on each correlation (Fig. 11). Note that nine pairwise correlations are
significant (p < 0.01) within this gene set.

Embedded in the Marrix tool is a module to compute principal
components (PCs) and eigenvector scores. PCA is used to extract shared
patterns of variation from larger numbers of traits that covary for different
reasons. For example, the first PC could represent a technical error or batch
effect, a second PC could correspond to sex differences, and a third PC could
correspond to variation produced by a gene variant. In many cases, PCs will not
correspond to any obvious single source of variance. Scores can be assigned to
each subject in the analysis for each of the PCs. These PC scores (also known
as eigenvector scores or even "eigengene" score in transcriptome studies) are
similar to residuals and have a mean of 0. The Scree Plot describes the fraction
of variance that is explainable by each of the PCs in descending order. For a set
of randomly selected transcripts as much as 25% of the variance may be
described by the first PC—often an indicator of an uncorrected batch effect.
The Factor Loadings Plot describes how each trait loads onto, or is correlated
with the first and second PCs (Fig. 12). In this example the first factor, or PC1,
explains ~28% of the variance in expression of the nine top transcripts from our
search. The PC scores can be used as composite traits and entered into GN
collections and workflows just like any other trait. To perform mapping and
analysis of the PC scores, select the PCA Traits link under PCA Traits (e,g.,
PCO01) then review the scores in the corresponding Trait Data and Analysis
page (Fig. 12). In this example two PCs capture most of the variation in
expression. Use the Interval tab in the Mapping Traits track to perform
standard QTL interval mapping. This common source of variation is not
derived from a single genetic locus as there are no strong QTLs modulating
either PC.

11. Construct a network graph from the Trait Collection using the Graph tool.
Additional tools are available in the Trait Collection to analyze relations among
the top genes (probe sets) in our list. Select all nine traits and the Graph tool.
This tool constructs a network graph that shows all possible correlations among
selected traits at a given threshold (Fig. 13A). Users can control the way the
graph is displayed using the options provided. The type of network can be
changed using the Select Graph Method dropdown menu. In addition, line
color and style, correlation type and threshold, and node label, font, and shape
are all customizable. High quality PDF or GIF files can also be generated. In
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our example, Mpdz is the highest connected gene in the network and has four
connections at a correlation of |0.3| or better (Fig. 13A), in contrast, Comt? is
not connected at all. Highly connected genes, sometimes called network hubs
or hub genes, are thought to have important biological roles, although this is a
topic of much debate in systems biology. In less complex systems (flies, worms,
and yeast), such hub genes are often essential genes required for survival.
However, in higher organisms the role of such hub genes is less clear. Note,
that our network of nine genes (or nodes) is much too small to make grand
biological conclusions, but is sufficient for an exploratory analysis and tutorial.

12. Test whether a subset of selected expression traits is enriched for biological
function using the Gene Set tool. Variation or covariation, such as that observed
using the Matrix (pair-wise correlations) and PCA (data reduction and pattern
analysis) or the Graph tool (covariation) can indicate underlying genetic control
or shared biological function. The Gene Set tool in the Trait Collection page
can be used to investigate whether selected sets of genes share common
biological functions. Select Mpdz and its correlates (Chrna4, Grial, Csnkle, and
Cntnap2) and the Gene Set tool (Fig. 13B). This tool uses WebGestalt to
compare functional GO anotations within the selected genes compared to a
background gene list that includes all of the genes (probe sets) included on the
M430 microarray used to generate this data set. Select View results to display a
directed acyclic graph of significantly enriched functional categories (Fig. 13C).
Even though the gene list submitted is quite small (only five genes), several
categories are enriched at an adjusted p-value less than 0.05. These categories
include signaling (Chrna4, Cntnap2, Mpdz, and Csnkle), part of neuron
projection (Chrna4, Cntnap2, and Mpdz), and regulation of action potential
(Chrna4 and Mpdz). Click on the Trait ID of each gene in the Trait Collection
and use the GeneWiki tool to explore their function in more detail. These genes
function in overlapping biological pathways, play a critical role in synaptic and
intracellular signaling, and have been linked to addiction. In addition,
expression of all genes is correlated and the expression of each is variable in
BXD hippocampus—Tlikely due to the presence of local sequence variants that
modulate expression.

13. Perform a reverse systems genetics analysis to dissect the consequences of
genomic variation on higher order traits by selecting the link for Trait ID
1449183_at (Comt) to navigate to the Trait Data and Analysis page.

Now that we have initiated a functional search and explored variation and
covariation among sets of genes, let us use the vast data resources available in GN to
perform a reverse systems genetics analysis to dissect the consequences of genomic
variation on higher order traits. From the Trait Data and Analysis page for Comz,
navigate to the GeneWiki entry. This gene has been extensively studied in human
populations and in the BXD cohort. A common polymorphism in humans results in
the substitution of the amino acid valine (Va/) to methionine (Mez), and a decrease
in activity. COMT is involved in the degradation of catecholamines, including the
neurotransmitters adrenaline, noradrenaline and dopamine. COMT alleles have
been associated with subtle differences in risk of psychiatric disease and difference
in cognition and attention. A Com¢ polymorphism also segregates among the BXD
population such that the maternal strain and those BXD progeny that have
inherited the B allele have a ~200 bp insertion (a type of mutational event in which
additional DNA is added to the genomic sequence) in the 3’ UTR that leads to
truncation when compared to the paternal haplotype (D allele) [7]. Interestingly, for
some Comt probe sets (1449183_at) this mutation leads to higher expression in
those strains that have inherited the B allele, unless the probe sets target the most
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distal part of the 3> UTR (1418701 _at) that is not expressed in those cases. In the
latter case, higher expression is observed in those strains that have inherited the D
allele. To look at this interesting discordance between probe sets, use the Find tool
to identify probe sets targeting Coms in multiple expression data sets from BXD.
Using the tools introduced to you earlier in this case study, compare where each
Comt probe set (1418701 _at and 1449183 _at) aligns to the reference genome, the
strain distribution of expression for each probe set, and the difference in cis eQTL
mapping (see Note 6). Note the different Record IDs for Comt that correspond to
different probes or probe sets across different microarray platforms. Different
regions of the Comt gene are being targeted by each probe or probe set, and this is
generally true for most genes and microarray platforms. The Find tool can also be
used to find corresponding probe sets for the same gene in human and rat data sets.

We know that the expression of Com¢ varies across the BXD set and we now
know from GeneWiki that the causal mutation underlying this variation is an
insertion. We can use GN data sets to determine the functional consequences of
this variation. In other words, we can ask what phenotypes are controlled by the
genetic variation at the Comtz locus. To do this we can navigate back to the Select
and Search page and identify phenotypes from the BXD Phenotypes BXD
Published Phenotypes data set that map back to the Com# locus. In the Combined
search option enter “LRS=(9 99 chr16 16 22)” to identify all phenotypes that have a
peak QTL located within 2 Mb of the Com# locus on Chr 16 at 18.4 Mb. This
should return at least 12 traits that we can add to our collection. Do the traits
returned make sense given the role of Coms in the regulation of catecholamine
(epinephrine, norepinephrine, and dopamine) levels? The expression of these
phenotypes is controlled by a QTL that precisely overlaps the location of Comz. To
compare the overlap in QTL mapping among these phenotypes and with the Comz
probe set, select all phenotype traits and the expression trait in the Trait Collection
and select the Heat Map tool. For finer mapping resolution up to 10 traits can be
mapped together using the Q7L Map tool.

In many cases this type of a reverse genetic analysis is complicated by the
linkage disequilibrium inherent in the BXD population, which has an average
haplotype block of about 50 Mb and an eQTL mapping resolution of around 1 Mb.
This often results in the presence of several genes and variants within a QTL
confidence interval that could control trait expression. In our case, Com¢ is the only
gene within a 4 Mb interval that contains a variant. Thus, traits that map back to
this locus are controlled by the variation in Comz. You can also use this same search
query in different BXD expression data sets to find downstream expression traits
(probe sets that map back to the Comz locus or are controlled by a trans eQTL that
originates from the Com¢ locus) or to find phenotypes or expression traits that
correlate with Comt? expression.

In the preceding series of examples we have illustrated how to query the GN
database and use some of the many tools available to perform systems level analyses,
including genetic mapping, exploring patterns of covariation and performing a
reverse genetics systems analysis to uncover the functional impact of sequence
variation. All examples rely on a large and well characterized genetic reference
population, the BXD cohort. In the next example we will explore some of the ways
to search human data sets available in GN.

4.2. Human Case Study
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In this example we will make use of a publicly available multi-level data set collected
from a human cohort. As in the mouse case study, navigate to the Select and Search
page and this time select Species = Human, and Group = Liver: Normal Gene
Expression with Genotype (Merck). Clicking on the Info button will show that this
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data set was originally published in 2008 [20] and then in 2010 [21] and was
specifically used to examine gene expression and cytochrome P450 activity in
human liver. Click on the Type dropdown menu to see the types of data that are
available for this group. You will see that there are two data types available for this
group. The Phenotypes data set (named as HLC Published Phenotypes) consists of
phenotypes collected from this population that can be used for genetic mapping.
Additionally, for some of the human cohorts including this particular group, the
Phenotypes category can also include some individual level demographic data such
as age, race, socio-economic status, etc. The other data type for this group is
microarray gene expression data for the liver (Liver mRNA). Additionally, there is
genotype data available for this cohort and users can perform basic genetic
association analysis within GN using PLINK.

Using a simple workflow, we will demonstrate how functions in GN enable
secondary analysis of published human data. We start out with basic demographic
data—the age of subjects—and examine what we can learn about age-related gene
expression changes in the liver.

1. Select Type = Phenotype and enter the wildcard symbols *or 2in the Ger Any
search box. These wildcards will retrieve all records available for this cohort in
the database. As of November 2015, there are 17 records in the Phenotype
category for this group and include three demographic variables, twelve
metabolic and physiologic traits, and two morphometric traits. Can you now
use the Matrix and Graph tools that were described in the above mouse case
study to inspect the correlation structure among these demographic variables
and the different phenotypes (see Note 7)?

2. Click on the Record ID 10001 (Demographics, age: Age [year]) to open the
Trait Data and Analysis page for the age data. Notice that the layout of the
page is similar to that of the expression traits described in the mouse case study,
but without the Resource Links and probe tools that are relevant to gene
expression traits. Examine the descriptive statistics and distribution profiles for
this data using the Basic Statistics track. You will see that the mean age is
about 50 years (+17 SD) and ranges from 1 to 94 years.

3. Given this wide range in sample age, we can now query if age is associated with
differences in gene expression in the liver. Open the Calculate Correlations
track and Select Database = GSE9588 Human Liver Normal (Mar11) Both
Sexes. It is also possible to stratify the analysis by sex by choosing either the
male or female expression data. For this example, we will retrieve the top 500
transcripts that have the highest correlation with age in both sexes. Select
Pearson and click Compute. The result of this analysis will be displayed in the
Correlation Table page. The top of this page will display actions and tools as in
the Trait Collection page (Fig. 5). The main correlation results are in the
Sample r and Sample p(r) columns (Pearson correlations and p-values,
respectively) (Fig. 14A). To access individual correlation plots, click on an
value and this will display a Sample Correlation Scatterplot with the trait on
the X-axis (in this case, age) and the mRNA expression on the Y-axis (Fig.
14B). For this example, click on the correlation (7 value) for the 12th transcript
in the list (mitochondrial ribosomal protein L9, MRPLY) and we see that the
expression of this mitochondrial ribosomal protein (MRP) gene is negatively
correlated with age. You can customize the scatterplot by selecting Show
Options in the Sample Correlation Scatterplot and setting your own
preferences. For instance, in this example (Fig. 14B), the axes have been
renamed from the default and the sample ID tag hidden.

4. The entire correlation results table can be exported by clicking on the Download
Table button. Additionally, you can also select a set of records based on
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correlation values using AND/OR operators by clicking the More Options
button and setting the selection criteria. In the example in Figure 14, all
transcripts that are negatively correlated with age are selected by setting the
Pearson correlations to range between r > 1.0 AND r < 0 (Fig. 14C).

5. As described above, the GeneWeaver (http://ontologicaldiscovery.org),
GCAT, and Gene Ser buttons at the top of the page allows users to seamlessly
connect with other external bioinformatics tools for additional analyses. After
selecting by correlation range, click the Gene Ser tool to import your gene list
from the GN correlation table directly to WebGestalt for GO enrichment
analysis. This will reveal if the transcripts that are negatively correlated with age
are enriched for any biologically relevant functions. Select View results and
carefully examine the graph of enriched functional categories. The most
enriched GO categories in this list of transcripts that are negatively correlated
with age include mRNA metabolic process and ribonucleoprotein complex
components (Fig. 15A). Now go back to the Correlation Table page that has
the negatively correlated transcripts selected. From here, clicking the GCAT
icon exports your selections as a gene list for a network analysis that examines
imputed functional relatedness based on published abstracts and text mining
(Fig. 15B). This quick analysis indicates that ribosomal genes are down-
regulated in expression during aging. The negative correlation between MRP
genes and age is striking, and members of this family of genes modulate aging
and lifespan in mice and C. elegans [22].

Now that we have performed a GO analysis of the transcripts that are
negatively correlated with age, repeat the analysis above with transcripts that are
positively correlated and demonstrate increased expression with age (see Note
8).

While mapping functions in GN are better optimized for model
organisms and standard test crosses, GN also provides an interface to PLINK
for performing simple GWAS in humans. Below we conclude this case study
with a demonstration of this mapping tool.

So far, we have used a wildcard search key to retrieve all the trait data available
for the Merck liver cohort and examined gene expression changes associated
with age. Now to perform a genetic association analysis using the phenotype
data, open the Trait Data and Analysis page for Record ID 10015. This is
CYP2C8 enzymatic activity measured in 362 cases.

Using the Basic Statistics track, note that unlike the age data, which had a
normal distribution, this phenotype has a highly skewed distribution. This
phenotype provides an example in which the choice between Pearson and
Spearman Rank in the Calculate Correlation section has a significant impact
on the resulting list of correlated genes. First, perform a Pearson correlation and
retrieve just the top 100 correlates from the GSE9588 Human Liver Normal
(Mar11) Both Sexes data. Perform the same analysis but this time select the
Spearman Rank option. Compare the two correlation tables. Note that while
the top gene for the Pearson correlation is TOMM40L (ID 10023831160), the
top transcript computed using Spearman rho is CYP2CS itself (10033668843).
The scatter plots for the Pearson 7 and Spearman rho reveals why the Spearman
rank correlation is better suited for this CYP2C8 enzymatic activity data and,
from the Spearman correlation table, we find that CYP2C8 enzymatic activity
is correlated with the expression of a number of other cytochrome P450 genes.
Now we test whether variation in CYP2CS8 enzyme activity and CYP2CS8
expression share common genetic causes. From the Trait Data and Analysis
page for record ID 10015, navigate to the Mapping Tools section. This tool
provides a quick but basic interface to PLINK [23]. Note that you can set the



thresholds for the minor allele frequency and as well as the p value. The current
version of this function in GN allows only the basic genetic association tests
and users cannot set the threshold for Hardy-Weinberg equilibrium or include
other covariates for population structure or demographic covariates in the
association model. So use this tool with these caveats in mind (and compare
with GN2 which does include some of these important functions). To initiate
the genetic association test, click the Compute Using PLINK button and Keep
outliers for this preliminary test. Perform the same analysis for CYP2CS8
expression (10033668843) to identify eQTLs.

9. The mapping result will be displayed as a Manhattan plot with chromosomal
location on the X-axis and the —logio(p) values on the Y-axis (Fig. 16). For the
enzyme activity phenotype, the top significant association (p < .0000001) is
with SNP rs6508937 chromosome 19. Clicking on the SNP Name (rsID) will
take you to NCBI's dbSNP page for that particular SNP which will contain
additional information on the type of variation, the ancestral allele, minor allele
frequency, etc. For the expression trait, the most significant association is with
SNP 510964657 on Chr 9 (p < .0001). Surprisingly, in this case, the
comparison of the two Manhattan plots does not flag any common SNPs and
therefore does not provide support for the hypothesis that covariation in
expression of transcripts and enzymes are due to shared genetic causes.

5. Future Directions and Conclusions
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One of the main values of GN is its vast resource of data that enables both
exploratory data-mining as well as specific hypothesis testing and cross-correlations
between phenotypes at many scales. At the end of 2015, GN contained 578 systems
genetics data sets for eight species and well over 70 different cell, tissue, and organ
types making it a 160 GB database of genotypes and well-structured phenotypes.
The amount of data in GN is growing rapidly: 255 datasets have been added in the
past two years, compared to ~100 in the preceding decade. With this volume of
data, search is a key feature for analysis and exploration. GN allows searching
through genomic, genetic and phenotype data contained in the database. Users can
then select multiple datasets and perform analysis on selected genes, traits and
collections. The web-browser interface allows for interactive exploration of GN
resources and the use of built-in analysis tools. This allows biomedical researchers to
explore the data without training in more advanced bioinformatics programming
languages, such as R and Python.

GN started out as a simple database and web site that was used primarily for
analysis of mouse, rat, and human genes, chromosomes, and linked phenotypes. GN
has now transformed into a service for on-line QTL mapping, eQTL analysis, and
systems genetics. GN allows researchers to upload and store their own research
data, run analyses—including QTL mapping, GWAS, and network analysis,
generate publishable figures, compare results with those of other datasets, and
explore relations between QTLs, genes, and phenotypes.

In this chapter we have highlighted the potential of GN by discussing built-in
functionality and providing a few use cases. GN is an evolving service. The goals
and challenges are to integrate new and sophisticated mapping and analysis features
while maintaining an easy user interface in a structured environment and providing
a powerful REST programming interface for power users. The new version of GN
(GN2) will provide greater flexibility and additional features such as the use of
generalized linear mixed models (LMMs), QTL mapping with covariates, and
Weighted Gene Coexpression Analysis (WGCNA) [24]. These tools are already
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available in the beta-release of the next generation of GN2 (Fig. 2). There are
many packages and web services available that can do individual components of a
quantitative genetics or systems genetics analysis well, such as QTL mapping or
data reduction and organization. However, there are no other resources that provide
both a data repository and an integrated set of tools and services for systems
genetics. Because GN and its environment consist of free and open source software,
the whole system is easily installed and deployed locally allowing for coexistence of
both a public data resource (the heart of GN) and local (private) data. It is even
possible to rebrand the webserver and make it outward facing for new projects or
1nstitute.

6. Notes
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1. Select Species = Human, Group = All Tissues..., Type = Frontal Cortex
mRNA. Click on the Default button to lock-in these settings. Now review
the Quick HELP Examples and User's Guide. The final query string
should be entered into the Combined search. It should look like this:
POSITION=(chr21 0 1000) MEAN=(4 1000) and should generate 28 hits.
To focus on genes involved in Down syndrome, also known as Trisomy 21,
add RIF=trisomy. This will trim the set down to four hits.

2. Select Species = Mouse, Group = BXD, Type = Liver Proteome, Data Set =
EPFL/ETHZ BXD Liver, Chow Diet... Click on the Default button to
lock-in these settings. Review the Quick HELP Examples and User's
Guide. The query string should be entered into the Get Any search. It
should look like this: zransLRS=(20 999 10) and should generate ~136 hits.
This search will return all trans QTLs with an LLRS between 20 and 999
using a 10 Mb window. Sort the results by the Max LRS Location column
and look for patterns in the types of proteins that map to the same eQTL
location; e.g. Chr 5 at about 127-128 Mb and Chr 10 at 107 Mb. These

are potential trans regulatory regions.

3. Yet another way to visualize whole data sets and search for regulatory
regions would be to select GenomeGraph from the Search tab in the banner
menu. Select the “EPFL...” data set described above in Note 2 and choose
the Mapping option. This should generate a graph that shows genome
location on the X-axis (each block is a chromosome) and position of the
gene on the Y-axis. Each red cross represents a significant association at a
false discovery rate (FDR) less than 0.2 (default is set to 0.2 or a FDR of
20%). Note the vertical bands (or trans bands) that indicate a number of
significant associations on several chromosomes, including Chr 5. In
contrast to trans eQTLs, cis eQTLs are indicated as a red cross on the
diagonal (a significant association that corresponds to the location of the
gene).

4. Check the function of Cdknl1b by selecting Gene Wiki from the dropdown
menu under the Search tab in the banner menu and entering the gene name
in the box and selecting submir. Inspect the entries and then perform a
search for the term “addiction”. Again, the term addiction (entry 799) is
used in an interesting way, “Data indicate that the addiction of MYCC-
amplified ovarian cancer cells to MYCC differs...”.

5. The probe set for Kcnj3 appears to align far beyond (distal to) the known
limits of the gene. To verify this, perform the RNA-seq BLAT alignment,



20

click on the browser link (far left), and then click on the zoom out 10x
button twice. Note that the RNA-seq tracks (blue and red) show intense
expression in the region well beyond the standard model 3> UTR. This is
not unusual; 3’ UTRs are often not well annotated. The probe set actually
does target the gene, and does so at the distal part of the 3> UTR. Two of
the probes overlap SNPs (736871 and 725381), and both are associated
with strong cis eQTL artifacts (see Hear Map).

To get to the Find tool you must navigate to the Trait Data and Analysis
page for the gene (or probe set) of interest. Use this page or an existing
BXD Trait Collection if active from the mouse case study. Alternatively,
start over from the main search page by searching for Coms in most open
BXD or even human lymphoblastoid and some aging brain expression data
sets (Groups from Meyers and Liang). For Com¢, the Find tool will return
a number of results from four human data sets, four rat data sets and over
20 mouse data sets. For many of these data sets the expression of Comt is
measured from multiple probes. For mouse and human data sets, the
expression of each probe set appears to vary despite targeting the same gene
(see Mean Expr or Mean Expression column). Note the large number of
probes for data sets annotated with the term exon; exon-level microarrays
have probes designed to target each feature of a transcript (UTRs, introns
and exons). Explore each probe set for Comz by clicking on the Record ID
for 1418701_at and 1449183_at using Tissue = Hippocampus and
Dataset= Hippocampus Consortium M430 (Jun06) RMA. You will be
redirected to the Trait Data and Analysis page for each record where you
can compare the Coms transcript feature targeted by each probe set using
the Verify or RNA-seq tool, explore the distribution of expression across
BXD strains using the Basic Statistics track and Probability Plot and Bar
Graph (by rank) options, and compare allelic effects and cis eQTL
mapping using the Mapping Tools track and the Interval mapping option.
You should see that probe sets targeting the distal end of the Comz
transcript (the distal 3’ UTR, probe set 1418701 _at) have a very different
pattern of expression across inbred strains of mice and the BXD panel
when compared to probe sets that target coding exons or more proximal
regions of the 3> UTR (probe set 1449183_at).

Start by selecting all 17 records from the Search Results page and Add to
Trait Collection. From the Trait Collection page, select all 17 records and
then click the Matrix tool. For a graphical visualization of the correlation
among the different variables select the Graph tool. Try any of the network
methods from the Select Graph Method and set the correlation to [0.25]
with Pearson as Correlation Type. By examining the correlation matrix and
the network graphs, you will learn that the various enzyme activity traits
form a correlated network. While ethnicity and sex show no correlation
with any of the traits, age is positively correlated with weight, which, as
might be expected, has a strong positive correlation with BMI.

Transcripts from the Correlation Table that are positively correlated with
age can be selected by setting the More Options track to » > 0 AND r < 1.0.
Alternatively, a quicker way is to simply click the Invert Select option. Send
this list of genes to WebGestalt by clicking the Gene Set tool. Note that the
enrichment p values for this set of genes positively correlated with age are
not as significant as for those that are negatively correlated with age.
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Species

Figure 1. Organization of data sets in GeneNetwork
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Human

viouse

Higher Order

Group  Genotypes Molecular Traits Phenoype Traits Description and Usage Reference
Massive collaborative effort to explore associations between
- genotype and gene expression across tissues collected from up
All Tissue, RNA-Seq Expression profiles (RNA-seq) to 1,000 individuals. Suitable for quantitative genetics (QTL The GTEx Consortium,
Yes from 30 peripheral tissues and 11 No - S N Ny :
GTEx V5 brain subregions mapping) and systems genetics, including correlation and Science (2015)
g network analysis to compare associations between tissues and
between other human or rodent data sets.
A study of cortical gene expression for normal aged and
Brain, Aging: AD, Expression profiles (Agilent Alzheimer’s disease cases with ~176 cases and 187 controls per Webster J A etal. Am
Normal Gene microarray) from cerebellum, tissue. Suitable for quantitative genetics (QTL mapping) and T p
N A Yes N No - . A - J of Human Gen.
Expression with prefrontal cortex, and primary systems genetics, including correlational and network analysis to
5 o - 8 (2009)
genotypes (Myers) visual cortex compare associations between tissues and disease state or
between other human or rodent data sets.
Gene expression profiles from 427 human liver samples that
Liver- Normal Gene Expression profilos includes measurements of activity for nine enzymes. Suitable for
Expression with Yes (RoseftaMerck Human44K11  Metabolic traits ~ dUanitative genetics (QTL mapping) and systems genefics, Schadt E-E. etal, Plos
Genotypes (Merck) microarray) from liver |n;|u_d|ng correlatlonal and netwprk analysis to compare Biology (2008)
associations between tissues and disease state or between
other human or rodent data sets.
h?g;?;g‘c%i“yg;gz Study that includes brain expression profiles from 147
Brain: Normal Gene No beadchi mic-roarrg ) from No individuals. Suitable for correlational and network analysis to ~ Gibbs J.R. et al., Plos
Expression (NIH/Gibbs) P . compare associations between tissues and between other Genetics (2010)
cerebellum, caudal pons, frontal
human or rodent data sets.
cortex, and temporal cortex
A study that includes brain expression profiles from 307
. P . ] Alzheimers disease cases, 152 Huntington's Disease cases and
Brain, Aging: AD, HD, Expressmn profiles (Agilent 132 controls. Suitable for correlational and network analysis to
Normal Gene No microarray) from cerebellum, No compare associations between tissues and disease state and Zhang B. etal, Cell
Expression prefrontal cortex, and primary Ny (2013)
. between other human or rodent data sets. Tissues provided by
(Harvard/Merk) visual cortex ;
the Harvard Brain Tissue Resource Center
(www_brainbank.mclean.org).
Expression profiles (Affymetrix
Human genome U133 Plus 2.0 A survey of gene expression across six brain regions for normal
Brain, Aging: AD, microarray) from entorhinal aged and Alzheimer's disease cases with ~ 14 biological Liana W.S. et al. PNAS
Normal Gene No cortex, hippocampus, medial No replicates per tissue and condition. Suitable for correlational and ng V-s. ’

Expression (Liang)

BXD

Mouse Diversity Panel

BHF2 (Apoe Null) UCLA

Heterogeneous Stock

Table 1. A sample of well characterized human and mouse data sets. Many of the Data Sets are amenable

temporal gyrus, posterior
cingulate cortex, superior frontal
gyrus, pnmary visual cortex
Expression profiles for peripheral
tissue (adipose, adrenal gland,
bone, cartilage, eye and retina,
gastrointestinal tract, kidney, liver,
lung, muscle, and spleen), brain
tissue (whole brain, amygdala,
cerebellum, hippocampus,
hypothalamus, midbrain,
neocortex, nucleus accumbens,
pituitary, prefrontal cortex, and
striatum), and cell type
(hematopoietic cells,
hepatocytes, hippocampal
precursor cells, and T-cells)
measured on multiple microarray
platforms and using RNA-
sequencing. Some proteome data
from liver is also available.

Yes

Expression profiles for bone,
dorsal root ganglion,

S .
hippocampus, and liver measured
using microarray platforms.

Ye:

Expression profiles for adipose,
brain, liver and muscle measured

Yes - y .
using the agilent microarray
platform.
Expression profiles for
Yes hippocampus, liver, and lung

using the lllumina Mouse WG-6
v1, v1.1 microarray platform.

network analysis to compare associations between tissues and
disease state or between other human or rodent data sets.

Recombinant inbred genetic reference population (GRP) derived
by crossing a C57BL/6J (B) female with a DBA/2J (D) male. The

Behavioral, BXD set was derived from three seperate crosses of B and D
Metabolic, parental strains in early 1970's, late 1990's, and early 2000's.
Morphological, Data collection is part of a massive collaborative effort from
Pharmacological, multiple investigators. Suitable for quantitative genetics (QTL
Toxicology mapping) and systems genetics, including correlation and

network analysis to compare associations between tissues and
between other rodent or human data sets.

The Mouse Diversity Panel (MDP) is represented by multiple
and genetically divergent inbred strains. This panel has a higher

Behavioral, recombination rate, level of genetic vanation, and phenotypic
Metabolic, diversity than crosses derived from two parental inbred strains
Mormphological,  but demonstrates significant population structure. Suitable for
Pharmacological, quantitative genetics (QTL mapping) and systems genetics,
and Toxicology including correlation and network analysis to compare

associations between tissues and between other rodent or
human data sets.

This data set features a large F2 cross derived from C57BL/6J
and C3H/HeJ (BHF2) of 334 individuals. Both inbred progenitors
were null for ApoE resulting in a population of genetically diverse
F2 individuals that lack ApoE. Loss of this gene recapitulates
some of the phenotypes associated with metabolic syndrome.
The F2 population was fed a high fat diet from 8 to 24 weeks of
age. Suitable for quantitative genetics (QTL mapping) and
systems genetics of metabolism.

Heterogeneous Stock (HS) mice are derived from eight different
inbred strains (A/J, AKR/J, BALBc/J, CBA/J, C3H/HeJ,
C57BL/6J, DBA/2J, and LP/J). This panel has a higher
recombination rate, level of genetic vanation, and phenotypic
diversity than crosses derived from two parental inbred strains
but can demonstrate significant population structure. Suitable for
high resolution quantitative genetics (QTL mapping) and
systems genetics, including correlation and network analysis to
compare associations between tissues and between other
rodent or human data sets.

Metabolic

Morphological

(2008)

Peirce J.L. etal.,
Genetics (2004)

McClurg P. et al,
Genetics (2007)

Wang S. et al., Plos
Genetics (2006)

Huang G.J. etal,
Genome Res (2009)

to systems genetics mapping and other methods and are accessible at GeneNetwork. The Description and

Usage column provides details about the data set and potential usage. Note that only the first three human data

sets have both genotype and gene expression data and only the third data set features genotypes, gene
expression, and higher order trait data in the form of metabolic phenotypes.
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University of Tennessee: www.genenetwork.org [REECRSEIE I CU IR 2. i web Q TL ﬁ 9 Search
| | Home | Search | Help | News | References | Policies | Links | Welcome! Login I
— m——— = Search Databases
Select and Search with k
+ UTHSC Genome Browser Classic and Newest Tissue Correlation
Species: | Mouse 0 « UTHSC Galaxy Service
« UTHSC Bayesian Network Web Server SNP Browse
. r + GeneNetwork Classic on Amazon Cloud rowser
GRCIE 0 ] + GeneNetwork Classic Code on GitHub
_ « GeneNetwork 2.0 Development Code on GitHub .
Type: [ Phenotypes s + GeneNetwork 2.0 Development Gene Wiki
Data Set: | 8XD Published Phenotypes 4 m Interval Analyst

Databases marked with ** suffix are not public yet. Getting Started

Access requires user login.
1. Select Species (or select All) QTLminer

Get Any: E, APOA, et ical OR ] 2. Select Group (a specific sample)

Enter terms, genes, ID numbers in the Get Any field. 3 selet :g::o:J;aE:;aIIS) GenomeGraph

Use * or 2 wildcards (Cyp*a?, synap*). o Genotype (markers)

Use Combined for terms such as tyrosine kinase. o Expression (MRNAS) 5 i

Data Sets o (1 — i ]| # seectsDatabase Trait Collections 44
QLSDEs (4 U plooc / gical ANC 5. Enter search terms in the Get Any or Combined
field: words, genes, ID numbers, probes, advanced .
[ o | Scriptable Interface

6. Click on the Search button
7. Optional: Use the Make Default button to save your

Database Information 44

preferances

Quick HELP Examples and User's Guide Data Sharing

You can also use advanced commands. Copy these simple examples How to Use GeneNetwork
into the Get Any or Combined search fields:
Take a 20-40 minute GeneNetwork Tour that includes

Microarray Annotations
screen shots and typical steps in the analysis.

* POSITION=(chr1 25 30) finds genes, markers, or transcripts on chromosome
1 between 25 and 30 Mb.

« MEAN=(15 16) LRS=(23 46) in the Combined field finds highly expressed For information about resources and methods, select

genes (15 to 16 log2 units) AND with peak LRS linkage between 23 and 46. the [ buttons.

RIF=mitochondrial searches RNA databases for GeneRIF links.

WIKI=nicotine searches GeneWiki for genes that you or other users have

annotated with the word nicotine.

- Help

Try the Workstation site to explore data and features
that are being implemented.

. searches for synap: genes listed in the Gene Movies
Ontology. Review the Conditions and Contacts pages for
« NAME=(watson jd) searches for all genes associated in PubMed with the information on the status of data sets and advice on . »
author ) D Watson. their use and citation. Tutorials
+ 60:0045202 LRS=(9 99 Chr4 122 155) cisLRS=(9 999 10)
in Combined finds synapse-associated genes with cis eQTL on Chr 4 from 122 Mirror and Development Sites HTML Tour
and 155 Mb with LRS scores between 9 and 999.
- LRS=(9 999 Chr2 100 105) transLRS=(9 999 10) « Main GN site at UTHSC (main site)
in Combined finds diabetes-associated transcripts with peak trans eQTLs on Chr  « Germany at the HZI FAQ

2 between 100 and 105 Mb with LRS scores between 9 and 999. * Memphis at the U of M

History and Archive Glossary of Terms

GeneNetwork's Time Machine links to earlier versions GN MediaWiki
that correspond to specific publication dates.

* The UT Center for Integrative and Translational Genomics

+ NIAAA Initiative on (U01 AAD16662, U0 AAD13499, U24 AAD13513, UO1 AAD14425, 2006-
2016)

« NIA (RO1AG043930, 2013-2018)

NIDA, NIMH, and NIAAA (P20-DA 21131, 2001-2012)

= NCI MMHCC (U01CA105417), NCRR, BIRN, (U24 RR021760)

WebQTL. This site is currently operated by Rob Williams, Lei Yan, Pjotr Prins, Zachary Sloan, Arthur
Centeno. Design and code by Lei Yan, Zach Sloan, Kenneth Manly, Jintao Wang, Danny Arends, Piotr Prins, Sam
Ockman, Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Evan G. Williams, Alexander G.
Williams, Robert W. Willams, and colleagues.

GeneNetwork support from:

- WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as

Trait Collection Page
and Toolbox

Join GeneNetwork Mailing List
It took 0.000 second(s) for lily.uthsc.edu to generate this page

Figure 2. GeneNetwork main search page and organization. Most analyses in GeneNetwork will follow the
steps shown in panels A through D. In this workflow, a data set is selected (A) and mined for traits of interest
based on user search queries (B). Traits are then selected from the search (C) and placed in a collection for
further inspection and quantitative analysis (D). The banner menu contains additional search options and
helpful resources under the Search and Help tab, respectively (E).
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Figure 3. Local or distant modulation of gene expression in the hippocampus of BXD strains. QTL
maps are shown for Alad and Aftf4 in the top and bottom panels with the association score (LOD) plotted on
the Y axis across the genome (X-axis). Chromosomes and megabase position are shown at the top and
bottom of the graph, respectively. Expression of Alad is modulated by a local cis eQTL whereas expression
of Atf4 is modulated by a distant trans eQTL. The sequence variant underlying expression of Alad is actually
a copy number variant such that the parental DBA/2J strain and BXD strains that have inherited the D allele
at this locus have additional copies of the gene and higher expression (indicated by the green line
associated with the QTL peak in blue). The expression of Atf4 is modulated from a distal region on Chr 1.
BXD strains that have inherited the B allele from the C57BL/6J parent at the Chr 1 locus have higher
expression of Atf4. This distal region on Chr 1 (often referred to as QTL rich region 1 or QRR1) is a major
regulatory locus of many expression and behavioral traits. The additive effect is shown in green to the right.
The expression data can be accessed using Mouse Species: Mouse, Group: BXD Phenotypes, Type: BXD
Data Set: Hippocampus Consortium M430v2 (Jun06) RMA and entering the probe set IDs in the Get Any
search option.
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GeneNetwork S webQTLEY
University of Tennessee: www.genenetwork.org R\ S ',/
| Home | Search | Help | News | References | Policies | Links | Welcome! Login
Search Results

== Details and Links

GeneNetwork searched the BXD Published Phenotypes Database for all records that match the term .*. GeneNetwork found a total of
4931 records.

= Records

To add a group of Record IDs to your Trait Collection, use the Index checkboxes and click the Add button. To analyze any single record
click on its Record ID.

_aln| a®
s A Actions

Select Deselect Invert

Download Table

Phenotype Authors Year Max Max LRS Location Add
LRS Chrand Mb
™ ) a0 g |6@ ee
Infectious disease, immune system: Interferon
alpha (IFNa) cytokine expression level two days =
1 12973 |after infection with H5N1 influenza A virus (10°4 g;‘;’;:fbg’”afe’zz RR“; 2014 |25.5 |Chré: 3.416869 141.273
EID-50 of HK213 virus in 30 microliters saline) ’ 4
[pg/mL]
Infectious disease, immune system: MCP1
cytokine expression level two days after -
2 12972 |infection with H5N1 influenza A virus (1074 EID- 2;‘;’;:52)2’”{,",‘2’2’5ng 2014 [16.2 |Chré: 3.416869 784.296
50 of HK213 virus in 30 microliters saline) ‘
[pg/mL]

Figure 4. Overview of Search Results page. Panel A indicates actions and panel B shows
indexed search results. Number of records that match search term are shown in the Details
and Links section at the top of the page. Note that this page was generated using the
Mouse (Species), BXD (Group) Phenotypes (Type) BXD Published Phenotypes Data Set
and entering the wild card character (*) using the Get Any option. Summarized information
for each trait varies based on data set type but, in general, Record ID gives a unique
identifier for each data set, (e.g. a number for phenotype data sets and a probe set identifier
for expression data sets), Max LRS and MAX LRS Location Chr and MB give the
maximum association score for each trait, and associated peak chromosome and megabase
position, respectively. Add gives the additive allele effect, which is the estimated effect on
trait expression associated with inheritance of the maternal or paternal allele. Positive or
negative values indicate higher or lower expression associated with inheritance of the
paternal or maternal allele, respectively. From the Search Results page additional
information about individual traits can be accessed by clicking the Record ID. Multiple traits
can be selected (or deselected) using the actions options Select, Deselect, and Invert.
Selected traits can be added to a Trait Collection for further analysis using the Add option.
The red question marks are links to additional information about column headings.
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GeneNetwork o webQTL T}

| Home | Search | Help | News | References | Policies | Links | Welcome! Login

BXD Trait Collection

| -\ oy " A %G
— B é} 91“‘ €3 oiw Actions and Tools

v
Gene
Select Deselect [Invert Remove Export GCAT Gene Set  BNW
Weaver
g ! - ~S- A 4 D A 4 )
Graph Matrix Partial Compare QTL Map Heat Map

r— Dataset Trait Symbol Description Location Mean N Max Max LRS Location
Cases |gRs Chrand Mb
N gy 69

Infectious disease, Immune system:

Interferon alpha (IFNa) cytokine

expression level two days after . .
= - infection with HSN1 influenza A virus eI S e Re
(104 EID-50 of HK213 virus in 30
microliters saline) [pg/mL]

Infectious disease, immune system:
MCP1 cytokine expression level two
days after infection with HSN1
influenza A virus (10”4 EID-50 of
HK213 virus In 30 microliters saline)

3125.468 47| 16.2|Chré: 3.416869 784.296

— [pg/mL]

Figure 5. Overview of the Trait Collection page. Panel A shows the actions tools menu with
each action or tool represented by a clickable icon. Panel B shows the indexed search results.
Note that additional columns of data are shown for traits in a collection compared to traits in the
Search Results page, including Dataset, Symbol, Description, Location, Mean, and N
Cases. The Dataset and Description column provide information about which data set the trait
originated from and details about the trait itself. As multiple different types of data can be added
to the same Group collection it is useful to keep track of which data set the trait originated from,
especially if exploring the expression oft he same gene across tissue types. For phenotype data
sets, detailed descriptions are provided about trait measurement and for gene expression data
sets, the full gene name is given along with information about the probe set used to measure the
expression of that gene. The Symbol column gives the gene symbol for expression data sets
and an abbreviated name for phenotypes. Location and Mean give the location of the gene for
expression data sets and average trait expression, respectively. N Cases shows the number of
individuals that were included in the trait measurement. The red question marks are links to
additional information about column headings.
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= Details and Links

Trait Data and Analysis for Record ID 12973

= Details and Links

+ Basic Statistics

+ Calculate Correlations
+ Mapping Tools

= Review and Edit Data

Edit or delete values in the Trait Data boxes, and use the Reset option as needed.

Outliers highlighted in yellow can be hidden using the Hide Outliers button,
and samples with no value (x) can be hidden by clicking Hide No Value .

Index Sample Value 53 N
10| B6D2F1L 378.000| = | | 26.000] [ 3
2 1| D2B6FL | = | A [«
3 0| cs7BL/6) 185.000) = | | 21.000) | 11
4 | DBA/2) 1024.000| = | | 99.000] | 11
5 | BXD1 | = A [ A
6 0| BXD2 A = | AT A
7 0| BxDS x| = A [ A
8 1| BXD6 716.000)| = | |_49.000| [ 3
9 1| BXD8 A| = A [ x

10 () |BXD9 962.000)| + | | 13.000| | 4

BLAT specificity: 4.1 Score: 202
Mouse, BXD

Target Score:
Species and Group:
Database 3:

Resource Links:

Phenotype: Infectious disease, immune system: Interferon alpha (IFNa) cytokine expression level two days after infection
with H5N1 influenza A virus (10~4 EID-50 of HK213 virus in 30 microliters saline) [pg/mL]
Authors: Boon AC, Williams RW, Sinasac DS, Webby RJ
Title: A novel genetic locus linked to pro-inflammatory cytokines after virulent H5N1 virus infection in mice
Journal: BMC Genomics (2014)
Link: PubMed
+ = Basic Statistics
dd i e |

Add Find Verify GeneWiki SNPs

Trait Data and Analysis for Record ID 1422168 _a_at

Gene Symbol: Bdnf

Description: brain derived neurotrophic factor; distal half of last e
and denditic isoforms)

Location: Chr 2 @ 109.563816 Mb on the plus strand

Hippocampus Consortium M430v2 (un06) RMA
Gene OMIM UniGene GenBank HomoloGene
UCSC BIioGPS STRING PANTHER Gemma ABA

+ O v W £

TR0 P Probability Plot | Bar Graph (by name) | Bar Graph (by rank)

Nofsamples | a6
Mean 503.087
Median 498.000
Standard Error (SE) 33.175
Standard Deviation (SD) | 225.001
Minmum | 127.0
Maximum 1024.0

= Calculate Correlations

Sample r

BXD Published Phenotypes

Return: | fop 500

Pearson @ Spearman Rank

Compute

The Sample Correlation is computed between trait data and any
other traits in the sample database selected above. Use Spearman Rank
when the sample size is small (<20) or when there are influential outliers.

= Mapping Tools

Chromosome: Al §
Mapping Scale: | Megabase 4+

Permutations: 5000
Bootstrap Test (n=2000)
Use Parents

Use Weighted

Interval Mapping computes linkage maps for the entire genome or single
chromosomes. The Permutation Test estimates suggestive and sianificant
linkage scores. The Bootstrap Test estimates the precision of the QTL location.

Figure 6. Layout of Trait Data and Analysis page. Users can explore individual traits in detail in the
Trait Data and Analysis page. In the Details and Links track, a full description of the trait and
associated actions and tools are shown. Actions and tools vary slightly depending on whether the trait
is from a phenotype (A) or gene expression (B) Data Set. The results in B can be generated by
selecting Mouse (Species), BXD (Group), Hippocampus mRNA (Type), Hippocampus Consortium

M430v2 (Jun06) RMA (Data Set) and entering the gene symbol “Bdnf” using the Get Any option.

Multiple links to outside resources (shown as Resource Links) are provided for gene expression data
in addition to the GeneNetwork actions and tools Add, Find, Verify, GeneWiki, SNPs, RNA-seq, and
Probes. Both traits have a common set of tools shown in Panel C as the Basic Statistics, Calculate,
Correlations, and Mapping Tools tracks. Each track gives the user options to graph the trait
distribution, correlate expression of the trait with all other traits in a Data Set from the same Group, or
perform QTL mapping for the trait, respectively. Actual trait values are shown in the Review and Edit

Data track.



Trait Data and Analysis for Record ID 1417850_at

== Details and Links

Gene Symbol: Rb1

Aliases: Rb; Rb-1; pRD

Description: retinoblastoma 1; distal 3' UTR

Location: Chr 14 @ 73.595351 Mb on the minus strand

Target Score:
Species and Group:
Database 3:

Resource Links:

BLAT specificity: 11.2 Score: 225
Mouse, BXD
Hippocampus Consortium M430v2 (Jun06) RMA

Gene OMIM UniGene GenBank HomoloGene
UCSC BioGPS STRING PANTHER Gemma ABA

Q, y S
A =
Add Verify GeneWlkl SNPs RNA-seq Probes

EBI GWAS  Wiki-Pi

GeneWiki Entries

((

Search Results

== Details and Links
GeneNetwork searched the Hippocampus Consortium M430v2 (Jun06) RMA Database for all records with GeneRIF contains addiction and
with MEAN between 8 and 16 and with a cis-QTL having an LRS between 10 and 99 using a 10 Mb exclusion buffer. GeneNetwork found a
total of 31 records.

= Records

To add a group of Record IDs to your Trait Collection, use the Index checkboxes and click the Add button. To analyze any single record
click on its Record I

= %~ g
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Select Deselect

Download Table

Invert  Add
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e okt o il v e e, For ationl oot heck e Cane i i cocuet 2 ) [1417176_at |Csnkie |casein kinase 1, epsilon; exons S, 6, 7, and 8 Chris: 79.251131|10.880| 50.3|chris: 78.741346 | 0.209
GeneWiki for Rb1: m 30 1439750_at | Cntnap2 |contactin associated protein-like 2; distal 3' UTR Chr6: 47.253859 |10.080| 43.5|Chr6: 44.145773 -0.117
& ey ae 401 [1a3005 s |caknzb |GG e e cemtoerry - |Chre: 134.674945 | 9.542| 39.0|Chrs: 135.272116 | 0.161
2. High expression in hippocampus; primarily in neurons (ABA). ae - contactin associated protein-like 2; proximal 3' , .
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s
4. cis QUL detocted by Affymetrix probe set 1417850.at in hippocampus PONN data sa was voldated in a@ - multiple PDZ domain protein (withdrawal seizure
Hopocarpel RAA samples by SNapehot by Deriel Coban and ca, (2007) 6 ) |1418664_at |Mpdz |susceptibility, alcohol and drug dependence); mid |Chrd: 80.924534 |10.081| 37.6|Chra: 78.698063  [-0.188
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GeneRIF from NeB1: 8 ) |1457447.at |Rb1  |retinoblastoma 1; 5' part of intron 15 Chri4: 73.651395| 8.060| 35.3|chr14: 73.597328 |-0.173
1. these studles couplethe acivky of the retinoblastoma and mismatch repir o Suppressor pattways through the
egradation of yein D1 and dual ttenuaton of COKS acivRy (s masculs) PubMed B I ST D (e e
2. Charamnz:ubn of protein kinase C beta isoform’s action on retinoblastoma protein phosphorylation (Mus musculus) 90 1449183 _at |Comt and Chr16: 18.407690|10.860| 33.8|Chr16: 23.797301 -0.141
Pubbed two coding exons and proximal 3' UTR
e iPima, o aveaves syt o ot o, Y o (s i) Pt - gamma-aminobutyric acid (GABA-A) receptor,
. B o rotsin (Wus muscuus) Publded 10 () |1455444_at |Gabra2 |subunit alpha 2; far distal 3' UTR (longest 3' UTR |Chr5: 71.349699 [11.503| 33.7|Chrs: 71.133298 | 0.352
5. retinoblastoma protein (Rb) plays a pvaal ol n adipogeness by suppressing MAPK activity. (Wus musculus) PubMed isoform)
& s ncaton o che gty redsose it e sy deepmen o s occraes B - gamma-aminabutyric acid (GABA-A) receptor, _
7. Rbs role in cortical development veas examined in mice with talencsphalon-gpacifc Rb daletions, which survived unti 11 ) |1443865_at |GabraZ |subunit alpha 2 (alcoholism candidate gene); mid |Chr5: 71.350451 |10.744| 32.2|Chr5: 71.133298 0.366
birth. Ro-/- progenitor cells divided ectopically but survived & differentiated. Rb- mutants show enhanced neuroblast distal 3' UTR (long 3' UTR isoform, PM2L1 region)
rotforaton: (s musculie) PubMed = — >
S Tumor ormetion i mice with sometic nactiveton o theraticblaatoma gene interphotorsceptor rainol bxding proten- 12 0 |1455374.at |Kenj3 go*“s'\;ﬂ' ';W:dlzv-afrc';‘fvms channel, subfamily |, 5. 55 450073 |10.204| 31.5|chr2: 57.512264  |-0.101
expressing cells. (Mus musculus) Publed = member 3; far 3' B ek - - 157, .
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_ butyric acid (GABA-A) receptor, ) )
musculus) Pubhied 13 0 [1421738_at |Gabraz [92mma-amina 5 Chrs: 71.352858 |10.828| 26.6|ChrS: 71.133298 0.286
10, _Pax-2/R8 binding reverses repression of Rig-1 protein. (Mus musculus) PubMed - Subunit alpha 2; last exon and proximal 3' UTR
14 [ |1439940_at |Sic1a2 |SOMte carrier family 1 (glial high affinity glutamate | oy 5. 103 623749(11.088| 26.4|Chr2: 106.438338 | 0.442
- == - transporter), member 2; far 3' UTR
276. Rb-deficient cells hijack and redeploy Myc and E2f3 from an S-G2 program essential for normal cell cycles to a G1-S
program that re-engages ectopic cell cycles, exposing an unanticipated addiction of Rb-null cells on Myc. (Mus musculus)
PubMed

Figure 7. Exploring the function of Rb1. An unusual use of the term addiction in NCBI GeneRIF lead to
the inclusion of Rb1 in our search for addiction related genes whose expression is modulated by a strong
cis eQTL.
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Home Genomes Tables Gene Sorter PCR Session FAQ Help
Mouse BLAT Results
BLAT Search Results

ACTIONS QUERY SCORE START END QSIZE IDENTITY CHRO STRAND START END SPAN
browser details 1450486_a_at 255 1 264 264 100.0% 2+ 181454201 181454705 505
browser details 1450486_a_at 22 157 180 264 95.9% 2 - 58596543 58596566 24
browser details 1450486_a_at 20 13 32 264 100.0% 3 - 126181148 126181167 20
browser details Probe_236261 25 1 25 25 100.0% 2 4+ 1B1454201 181454225 25
browser details Probe_256731 25 1 25 25 100.0% 2 + 181454681 181454705 25
browser details Probe_299709 25 1 25 25 100.0% 2+ 181454357 181454381 25
browser details Probe_312833 25 1 25 25 100.0% 2 4+ 1B1454552 181454576 25
browser details Probe_369219 25 1 25 25 100.0% 2+ 181454229 181454253 25
browser details Probe_452573 25 1 25 25 100.0% 2 + 181454628 181454652 25
browser details Probe_567661 25 1 25 25 100.0% 2 + 181454512 181454536 25
browser details Probe_630109 25 1 25 25 100.0% 2 + 1B1454567 181454591 25
browser details Probe_702329 25 1 25 25 100.0% 2 + 181454329 181454353 25
browser details Probe_X14811 25 1 25 25 100.0% 2 4+ 1B1454458 181454482 25
browser details Probe_X85635 25 1 25 25 100.0% 2 + 181454258 181454282 25

Scale 200 basesf T
chr2: 181454300| 181454400| 181454500] 181454600| 181454700|
STS Markers on Genetic and Radiation Hybrid Maps

STS Markers

Your Sequence from Blat Search

Probe_236261 Il Probe_702329 [ Probe_X14811[Jlll  Probe 630109l  Probe_ 256731
1450486_a_at
Probe_369219 Probe_299709 Probe_567661 Probe_452573

Probe_X85635 | ] Probe_312833
UCSC Genes Based on RefSeq, UniProt, GenBank, CCDS and Comparative Genomics

Kor3
Oprl1
Oprl1
Opri
Kor3
Kor3
RefSeq Genes
RefSeq Genes
CNVs_Losses
CNVs_Gains
Inversion_SOLID
Inversion_GA2
Structure Deletions from GA2
Structure Delstions from SOLID
Insertions and Deletions (D2)
D2 InDels
Simple Nucleotide Polymorphisms (D2)

D2 SNPs | | | |
Figure 8. Probe set quality control. The RNA-seq button performs alignment of a probe set
sequence against the appropriate reference genome using UCSC Genome Browser’'s BLAST-like
alignment tool (BLAT). The results are shown for probe set 1450486_a_at in the top panel. The
SCORE is a function of the size and match. For large sequences a perfect score is 255. START,
END and QSIZE provide information about the size in base pairs of the query sequence.
IDENTITY provides information about the match with 100% indicating a perfect match to the
reference C57BL/6J genome. The location and span of the match are given by CHRO
(chromosome) STRAND, START, END, and SPAN. Note that both the probe set and the 11
perfect match probes that comprise the probe set are shown and that the best match for the
individual probes and entire probe set is on the positive strand on Chr 2 around 181.45 Mb.
Clicking the browser link for the best match directs to a graphical display of the probe set
alignment, shown in the bottom panel. The genome browser display can be cluttered fort he
uninitiated. The basic layout is a display of several different Tracks of information. These tracks
can be modified by scrolling down to the track tables at the bottom of the page. The display in the
above panel was generated by selecting the hide option for all tracks EXCEPT the Mapping and
Sequencing, Genes and Gene Prediction, and the DBA/2J Sequence and Structural
Variation tracks. The position of all 11 probes and the composite probe set are shown in the
bottom panel in black with the corresponding IDs shown to the left. The arrowheads designate the
alignment oft he probe set on the positive (or sense) strand. The targeted gene (Opr/7) is shown
below and indicates that the probe set is designed to target the 3’ UTR according to the UCSC
gene model. The location of sequence variants in the DBA/2J strain relative tot he C57BL/6J
reference genome are shown in the last two tracks (D2 Indels and D2 SNPs). Note probes 299709

and 452573 overlap a DBA/2J SNP.




Probe Information

The table below lists information of all probes of probe set 1 _a_at from Consortiu QTL Heatmap m
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R TR Y Redraw QTL Heatmap
- : m m m m Cluster traits Add description
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Stacking Energy KgT® 1 -
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&% &% &% GSB NSB &% (1] | L o W [ - W e i
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8 702330 | CAGTGGACATGCGTGGTGAACCCAT 7.99 0.00 R ik HH
i P ol I
9 @ | 299709 | GGTATTCATGGTTCACTTGACTCTT | [ 78.08 8.01 | 0.01 & o & 2NN =)
£ RS- AL
10 ) |299710 | GGTATTCATGGTACACTTGACTCTT 7.98 | 0.01 258 e W -
11 X14811 | TGACTACCTGTTGTGTGCTATTGCC | [ 82.29 8.02 | 0.00 C57BL/6] +
12 ] |X14812 | TGACTACCTGTTCTGTGCTATTGCC 8.01 | 0.00 DBA/2] +
! Signifiant LRS
13 @ |567661 | GTGATCATACCCAGTGTTGCCTGGC | [ 84.92 801 | 0.00 LRS=0  0.5*Suggestive LRS
14 (] |567662 | GTGATCATACCCTGTGTTGCCTGGC 8.03 | 0.00
15 312833 | TGCCTTGGAGCATCTAGTTCTGACT | [ 83.0 8.01 | 0.00
16 312834 | TGCCTTGGAGCAACTAGTTCTGACT 7.98 0.00
17 @ |630109 | AGTTCTGACTCCACTGATGCATTCA | [ 81.53 8.02 | 0.00
18 ) |630110 | AGTTCTGACTCCTCTGATGCATTCA 8.02 | 0.00
19 [ |452573 | GATGACTGTTTCCTGACGATTCTTT | [ 78.38 802 | 0.01
20 () |452574 | GATGACTGTTTCGTGACGATTCTTT 7.98 | 0.01
21 256731 | GGACTTCACACTTCATCTGGTACTG | [ 79.93 8.03 | 0.00
22 256732 | GGACTTCACACTACATCTGGTACTG 8.00 0.00

Figure 9. Impact of variants overlapping probe sets in microarray data sets. SNPs overlapping Opr/1
probeset 1450486_a_at (perfect match or PM probes 299709 and 452573) lead to expression
measurements that are higher in BXD strains that have inherited the B allele and lower in strains that
have inherited the D allele. The QTL Heatmap reveals a strong eQTL with higher expression associated
with inheritance of the B allele at the Opri1 locus (blue) only for the probes that overlap SNPs. The
arrowhead indicates the genomic position of the probes. No other probes demonstrate a strong
association between inheritance of alleles at this locus and gene expression. This analysis reveals that
the strong cis eQTL detected for Opri1 is actually the result of a technical artifact resulting from sequence
variants that disrupt the hybridization of probes to their target RNA sequence in strains other than the
reference B6 strain (in this case the D2 strain).
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2 () |HC_M2_0606_R|1417176_at | Csnkle |casein kinase 1, epsilon; exons 5, 6, 7, and 8 Chr15: 79.251131 | 10.880 99| 50.3|Chrl5: 78.741346 0.209
3 | |HC_M2_0606_R|1422798_at| Cntnap2 |contactin associated protein-like 2; proximal 3' UTR Chr6: 47.249022 |10.182 99| 37.7|Chré6: 46.977241 -0.122
N multiple PDZ domain protein (withdrawal seizure
4 | |HC_M2_0606_R | 1418664_at | Mpdz susceptibility, alcohol and drug dependence); mid Chr4: 80.924534 |10.081 99| 37.6 Chr4: 78.698063 -0.188
distal 3' UTR
5 [ |HC_M2_0606_R|1448972_at | Griaz | 9'utamate receptor, ionotropic, AMPAL (alpha 1); 1ast |y, 14. 57 131208(12.695| 99| 37.4|Chri1: 57.088037 | 0.331
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catechol-O-methyltransferase (synaptic cleft,
6 [ | |HC_M2_0606_R|1449183_at Comt dopamine and norepinephrine catabolism); last two Chri6: 18.407690 | 10.860 99| 33.8 Chri6: 23.797301 -0.141
coding exons and proximal 3' UTR
7 () |HC_M2_0606_R | 1421738_at | Gabraz |92Mma-aminobutyric acid (GABA-A) receptor, subunit | -, 5. 71 357858 |10.828| 99| 26.6|Chrs: 71.133298 0.286
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transporter), member 2; far 3' UTR
9 [ |HC_M2_0606_R|1437920_at | Ephas Eph receptor AS5; proximal 3' UTR of a short message |Chr5: 84.496134 9.874 99| 25.8|Chr5: 78.347362 0.132

[ Choose File | No file chosen

| Comens+) [T

Figure 10. Top cis modulated genes associated with addiction
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Figure 11. Exploring covariation. The matrix function allows users to investigate covariation between
genes (or probe sets) in the Trait Collection. To display the gene symbols along with the probe set IDs,
use the Short Labels button to redraw the correlation matrix. The matrix displays the correlation for each
pair of genes (or probe sets) with the spearman correlation coefficient shown to the right of the diagonal
and the Pearson Correlation Coefficient shown to the left (the diagonal is indicated by grey shading and
would normally be represented as a 1, or the correlation of each probe set with itself). Scatterplots can be
generated by clicking the correlation in the matrix. The scatterplot can be customized by selecting the

Show Options icon, adjusting the settings, and replotting.

34



35 Mulligan and colleagues

PCA Traits
1.
PCA Traits generated at November/30 17:03:07 from : PCO1 | [ TR
2. PCA Traits generated at November/30 17:03:07 from : PCO2 |
=
Scree Plot
Chromosome: All %
Pearson's R Scree Plot Mapping Scale: | Megabase
\ Permutations: 5000
30.0 Bootstrap Test (n=2000)
e Use Parents
Use Weighted
25.0
* . m 1.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1819 X
@ \ o
g \
5 20.04 Interval Mapping [
= chromosomes. The[
2 \ linkage scores. The|
i} \ ,
£ 15.0 \ g
= \ | 1
: . bkt 1 ‘ o hiod L]
S 10.04 e A “ |
8 rirgiin
&) L _ Megabases
5.0 e
.
0.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Factor Number

Factor Loadings Plot

Factor Loadings Plot (Pearson)

0.6
Sic1a2 Gabra2
0.5 439540_-'!' 1421’35 at Ephas
04l c.snkme;‘.\su , ’,‘ = 1437820 at
Gria1, "0 f
0.3 144897273! \\‘ |
T sl \
5 NV
g o \ | / Cntnap2
| 7:\“_, _— ——1422798_at Mpdz
0.0 Chri - = T 1418664 _at
0.1 4421202 at P
o2 comt
1449183_at

.3
-0.6 -0.5-0.4-0.3-0.2-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Factor (1)

Figure 12. Principal component analysis (PCA). As part of the matrix tool, a PCA is performed on the
selected traits. The Scree Plot (left panel) plots each principal component (PC) based on the amount of
variance each PC or factor explains. The Factor Loadings Plot displays the loading (the correlation)
between each treat (the measured variable) and the factor or PC (latent variable). Each PC can be treated
as a trait. If selected the same basic functions and tools for individual trait analysis can be used for the
PC. QTL mapping is shown for PC1 in the top right panel. Interval mapping does not suggest strong
genetic control originating from a single locus for PC1.
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Figure 13. Creating networks and analysis of biological enrichment. From the Trait Collection a
network graph depicting relations between gene set members can be constructed using the Graph tool.
Display and correlation threshold can be adjusted using the Network Graph interface. Each node represents
a gene (probe set) and the edge indicates the correlation (green for negative correlations and red for positive
correlations). In this case the network shown in A was given a threshold of r = |0.3| as this represents a
significant correlation (p < -0.01) in this data set. Based on the network, a subset of genes (shown in the
yellow panel in B) can be selected for enrichment analysis. Select the subset in the Trait Collection and
select the Gene Set tool. Enrichment analysis is shown in the background (C), with significant (adjusted p-
value or AdjP < 0.05) enrichment of biological function (based on GO annotations) shown in red.
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A Correlation Table

Values of Record 10001 in the HLC Published Phenotypes database were compared to all 39302 records in the GSE9588 Human Liver b
the Genetic Correlation (Pearson's r) are displayed. You can resort this list using the small arrowheads in the top row.
Click the correlation values to generate scatter plots. Select the Record ID to open the Trait Data and Analysis form. Select the symt o
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10023845567 ZNF5188 zinc finger protein 5185 Chrd: 10.441663 | -0.006|— |- 0571 b.00e+00] - - -|

10023811328 ZIC1 Zic family member 1 (odd-paired homolog, Drosophila) Chr3: 147.134506 | -0.087|— |- 0.487 0.00e+00 - 3
3 10023813788 LGALS4 lectin, galactoside-binding, soluble, 4 (galectin 4) Chr19: 39.292310 -0.185|— |- 0478 0.002+00) - - -
4 10025908367 SPATAIS spermatogenesis associated 18 homolog (rat) Chré: 52.963458  -0.015|— |- 0.440 0.00e+00) -
5™ 10023813511 F209 frizzled homolog 9 Chr7: 72.850450  -0.013| 0432 6 0.00e+00 -

i beta-lipotropin/
6 ¥ 10023824680 POMC pl hormone/ Chr2: 25.383721 0.005|-- o 0.428 6 0.00e+00 -
stimulating hormone/ beta-endorphin)

7 10023836503 TMEM22 transmembrane protein 22 Chr3: 136574734 | 0.032|— |- 0426 [h26 0.00e+00[ - - -
8 10023808805 1GHAI immunoglobulin heavy constant alpha 1 Chri4: 106.173506 -0.171|— |- 426 0.00e+00| -
o 10031920757 1GHAZ immunoglobulin heavy constant alpha 2 (A2m marker) Chrl4: 106.053270 -0.138|— |- 426 0.00e+00| - = -]
10 10025905101 SORCS2 sortilin-related VPS10 domain containing receptor 2 Chré: 7.744564  -0.121|— |- 426 0.00e+00 -
11 _ 10023824797 ALDOB aldolase B, fructose-bisphosphate Chrd: 104.182841 | -0.020|— 425 6.66¢-16
12 ¥ 10025907796 MRPLO mitochondrial ribosomal protein L9 Chrl: 151732122 -0.013~- |- 426 1.11e-15| -
13 & 10025909338 EWSRI "Ewing sarcoma breakpoint region 1 |Chr22: 29.696515 |-0.006|-- |- 0.360| 426 1.78e-15| 3
14 ¥ 10025003841 RPLI9L ribosomal protein L39-like Chr3: 186.838740 -0.015| |- 0368) 426 1.78e-15| -
15 10025906665 SULF2 sulfatase 2 Chr20: 46.286149 -0.068 -~ - 0.368 426 1.001-15‘ - - -
16 _ 10025906168 F8PI fructose-1,6-bisphosphatase 1 Chr0: 07.365420  -0.067|-- |- 0368 426 2.22e-15 - 3
17 10025933520 AgHu44K_10025933520 Agllent Rosetta-Merck Human 44k 1.1 probe set 10025933520  ChrUn: 1.000000 | 0.076|-- |- 0367| 426 2.44e15| - - =]
18 _ 10033668838 SLC9AS solute carrier family 9 (sodium/hydrogen exchanger), member 5 Chr16: 67.306094 -0.003|— |- 0365 426 3.77e-15| -
19 10023824585 TM7SF3 transmembrane 7 superfamily member 3 Chr12: 27.124505 -0.078| |- 0.364) 426 4.66e-15| -~ - -
20 10025903432 HsD17813 hydroxysteroid (17-beta) dehydrogenase 13 Chré: 88.224940 -0.259|— |- 0363 426 4.88e-15| -

Figure 14. Correlation table and correlation scatter plot. (A) The Correlation Table displays
the results of a correlation analysis between a trait or data of interest and other traits collected
from the same cohort. In this case, the correlation analysis is between the demographic age data
and gene expression in the liver. (B) Individual scatter plots can be displayed by clicking on
correlation values found in the Sample r column. This example shows a significant negative
correlation between the expression of a mitochondrial ribosomal protein gene, MRPL9, and age.
(C) Users can select transcripts in the table by setting the correlation criteria using AND/OR

operators.
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Index UserlD Value Gene Symbol Gene Name
10 10023828649 -0.3292 RPS2 ribosomal protein S2
20 10023817958  -0.2776 RPS2 ribosomal protein S2
30 10025802181  -0.3500 MRPS17 mitochondrial ribosomal protein $17
40 10025907796  -0.3717 MRPLY mitochondrial ribosomal protein L9
50 10025910978  -0.2852 PLRG1 pleiotropic regulator 1
6 10025912443  -0.3533 MRPL22 mitochondrial ribosomal protein 122
70 10025512898  -0.2816 PPILL peptidylprolyl isomerase (cyclophilin)-like 1
80 10025903214  -0.2983 POP4 processing of precursor 4, ribonuclease P/MRP subunit (S. cerevisiae)
9 10023807409  -0.2767 RPL34 ribosomal protein L34

10 () 10023817993  -0.2781 SNRPC 'small nuclear ribonucleoprotein polypeptide C

110 10025912154  -0.2967 PSMAG proteasome (prosome, macropain) subunit, alpha type, 6

12 10025903841  -0.3685 RPL39L ribosomal protein L39-like

7 - 13 () 10025910363  -0.3424 cwea? CWC27 spliceosome-associated protein homolog (S. cerevisiae)
‘. 14 10023826383  -0.2902 yexi Y box binding protein 1
A . 15() 10025910073  -0.2824 MRPL11 mitochondrial ribosomal protein L11
16 () 10023848287  -0.2816 MRPL4S mitochondrial ribosomal protein L45

Gene Set

® 0000000000000

Figure 15. Biological enrichment and network analysis. Gene lists can be sent directly from gene network
to other external websites for (A) Gene Ontology, and (B) functional network analysis.
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Figure 16. Manhattan Plots. Basic genetic association test is performed within GeneNetwork using
PLINK and result is displayed as a standard Manhattan plot. Comparing between the GWAS results
for the (top) CYP2C8 enzyme activity (Record ID 10015), and (bottom) expression of CYP2C8 gene in
liver (GSE9588 Human Liver Normal (Mar11) Both Sexes: 10033668843), we find no common genetic
modulator of the two related traits.
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