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Summary	
  

The goal of systems genetics is to understand the impact of genetic variation across all levels of biological organization, from 
mRNAs, proteins, and metabolites, to higher order physiological and behavioral traits. This approach requires the 
accumulation and integration of many types of data, and also requires the use of many types of statistical tools to extract 
relevant patterns of covariation and causal relations as a function of genetics, environment, stage, and treatment. In this 
protocol we explain how to use the GeneNetwork web service, a powerful and free online resource for systems genetics. We 
provide workflows and methods to navigate massive multiscalar data sets and we explain how to use an extensive systems 
genetics toolkit for analysis and synthesis. Finally, we provide two detailed case studies that take advantage of human and 
mouse cohorts to evaluate linkage between gene variants, addiction, and aging.  	
  
	
  

1. Introduction 	
  

GeneNetwork (www.genenetwork.org, GN) is a web service for systems genetics. It 
started in 2001 as WebQTL—an online version of Ken Manly's Map Manager QT 
program [1] combined with data sets in the Portable Dictionary of the Mouse Genome 
[2]. GN is a data repository and analytic platform for systems genetics that integrates 
large and diverse molecular and phenotype data sets. Just over 1000 papers listed in 
Google Scholar have used GN in many different ways. 	
  

GN was initially used as a traditional forward genetics tool to map quantitative 
trait loci (QTLs) and expression QTLs (eQTLs) in sets of recombinant inbred (RI) 
strains and standard genetic test crosses, including F2 intercrosses and backcrosses [3]. 
As the number and variety of data types grew it became practical to implement 
multivariate type analysis in GN—namely, the genetic covariation among large 
numbers of phenotypes [4-6]. This kind of assembly, analysis, and integration of sets of 
phenotypes and even entire phenomes is a hallmark of systems genetics and is the 
forerunner and experimental companion of personalized health genomics and precision 
medicine. Thanks to recent breakthroughs in sequencing technology, GN can now also 
be used for novel reverse genetics approaches such as phenome-wide association studies 
(PheWAS). In a typical reverse genetics approach, gene function is determined through 
manipulation, either by gene deletion (knockout), addition of altered sequence (knock-
in), silencing (RNA interference or RNAi), or gene editing (e.g. clustered regularly-
interspaced short palindromic repeats or CRISPRs).  Similar to these more traditional 
approaches, a PheWAS begins with known genes and sequence variants and then tracks 
down sets of linked biomarkers and phenotypic consequences [7-9].

At its most basic level, GN is a tool for studying covariation and causal 
connections among traits and DNA variants. This sounds simple enough, but it can be 
challenging to know how to get started and how to navigate and use the many program 
modules and options. Here we provide detailed instructions for using GN along with 
“worked” examples and some test questions (and answers) that should ease entry into 
this resource. All examples and figures were taken from the production version 1 of GN 
(late 2015). While the interface may change in the next few years (GN version 2, 
GN2), all of the logic, data types, and procedures described here will still be applicable. 	
  

The potential scope of GN analysis tools is broad—well organized collections of 
genetic, genomic, and trait data from different species can be integrated easily—either 
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as private or open data. At this point GN includes curated data sets for a variety of 
model organisms and plant species, including humans, monkeys, rodents, Drosophila, 
and Arabidopsis, soy, and barley. Data are usually open and exportable, and data 
typically include information for hundreds to thousands of individuals with matched 
genotypes for thousands to millions of markers (usually SNPs), array or RNA-
sequencing (RNA-seq) data for tens of thousands of transcripts, and in a growing 
number of cases, proteomic, metabolomic, metagenomic, behavioral, and 
morphological data. 	
  

Massive omics data sets are unwieldy to access, normalize, and analyze. Even those 
skilled in bioinformatics spend more than half of their time simply wrangling, 
reformatting, and error checking data sets to match the requirements of different 
workflows. GN spares the user most of these problem. Data are formatted and 
normalized, and usually come with good metadata (often in the form of links to more 
information). This greatly simplifies QTL and eQTL analysis, candidate gene 
discovery, coexpression analysis, and hypothesis testing [3,10]. The GN toolkit 
includes many search functions, tools to study correlation and partial correlation, 
multiple QTL mapping methods (including R/qtl, PLINK, and GEMMA, and FaST-
LMM in GN2), and powerful dimension-reduction techniques (principle component 
analysis and weighted gene coexpression analysis), network construction, enrichment 
analysis, variant analysis, and links to key informatics resources such as NCBI 
(www.ncbi.nlm.nih.gov), the UCSC Genome Browser (genome.ucsc.edu), BioGPS 
(biogps.org), the GWAS Catalog (www.ebi.ac.uk), Gemma (www.chibi.ubc.ca), the 
Allen Brain Atlas (www.brain-map.org), and GeneWeaver (GeneWeaver.org). 	
  

In this chapter we introduce the basic architecture of GN (section 2) and work 
through two detailed cases studies (sections 4.1 and 4.2) that analyze both mouse 
and human data sets. We also explain how GN links to other web sites that provide 
complementary resources and analysis tools (section 3). Throughout the chapter we 
provide a series of questions that can be used to test your proficiency. Answers are 
provided at the end of the protocol in the Notes section. Both Case Study 4.1 and 
4.2 provide detailed protocols needed to exploit GN data resources and to test specific 
hypotheses. Work through both of these examples and use the notes to gain an 
excellent understanding of the range of applications and types of questions that can be 
addressed and often answered using a systems genetics approach.	
  

	
  

2. Organization 	
  

	
  
The first challenge in using GN is to locate cohorts (groups of subjects or samples) 
and associated data sets. The hierarchical organization of GN’s main Select and 
Search menu is simple and makes it relatively easy to find relevant data sets (Fig. 1). 
To get data, after opening the browser, select the most appropriate Species from the 
dropdown menu. For an open-ended search of phenotypes you can also select All 
Species at the bottom of the menu. The next steps are to select the Group, Type, 
and Data Set from the drop-down menus. For many groups, a combination of 
phenotypes, genotypes, and molecular data are available. This makes it possible to 
perform QTL mapping and the analysis of trait and gene covariation. Table 1 
provides a sample of human and rodent data sets that are amenable to these types of 
analyses. 	
  

As a navigation aid in this protocol, all active links in GN (buttons and linked 
text) and all data that you type into search fields such as Get Any are displayed 
using bold italic font. In contrast, page names, titles, column headers, and static 
menu items are displayed using bold font. 	
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2.1. Types of Data  	
  

Almost all human data sets in GN include gene expression measurements (Table 1). 
In addition, several data sets also include genotypes and can therefore also be used 
for eQTL analyses. Examples include all of the human GTEx data sets and several 
human brain and liver expression data sets: Brain, Aging: AD, Normal Gene 
Expression with Genotypes (Myers) and Liver: Normal Gene Expression with Genotypes 
(Merck) (Table 1). Concerns about subject confidentiality sometimes limit the 
amount of data available for human cohorts. Non-human cohorts, such as rodent 
populations, do not suffer from these restrictions and often contain more levels of 
data (Table 1). The rodent cohort with the most extensive data collection is 
currently the BXD family of strains derived from a cross between C57BL/6J (B) 
and DBA/2J (D) [11]. Inbred panels and RI strains represent stable populations 
that allow for deep resampling of individual genotypes and the accumulation of 
many different levels of data over time, and across laboratories and research 
communities enabling replication of research and the study of the pleiotropic 
actions of variants. The BXD set, for example, includes a wide variety of trait 
measurements collected over the last four decades [12]. Other populations 
commonly used for quantitative genetics and systems genetics include F2 
intercrosses and outbred populations such as heterogeneous stock (HS) mice. For 
most F2, outbred, and human populations, each individual is truly unique and 
collecting multiple levels of data and studying gene-by-environmental (GXE) 
interactions and lab-to-lab replication is usually not practical. 	
  

2.2. Starting an Analysis	
  
The main GN search page and an overview of a typical workflow are shown in 
Figure 2. Data sets are selected based on Species, Group, and Type (Fig. 1). 
Detailed information and metadata can often be reached by clicking the Info 
buttons to the left (Fig. 2). Data Sets are queried using either Get Any or the 
Combined options. Searching with Get Any performs matches to entered text using 
the logical OR operator. For example, if the term “alcohol ethanol” is entered into 
Species = Mouse, Group = BXD, Type = Phenotypes, and Data Set = BXD 
Published Phenotypes, then the search will return all matches for “alcohol” or for 
“ethanol” (>500 results). In contrast a search for "alcohol consumption" in the 
Combined search option (Fig. 2B) uses the logical AND operation and generates 
far fewer results. Very long lists of gene symbols or probe set IDs—a thousand or 
more—will fit into these search boxes. 	
  

To get started, experiment with the Quick HELP Examples located just below 
the Combined search option (Fig. 2, center). Test whether you can find all genes 
on human chromosome (Chr) 21 that have high expression (>4.0 log2 RPKM) in 
the frontal cortex (see Note 1). Search queries are dependent on the Data Set type. 
For example, genotype data sets can be searched by marker name or marker 
position; phenotype data sets can be searched by phenotype description or authors' 
names; gene and protein expression data sets can be searched based on expression 
level, gene location, gene symbol, a Gene Ontology category (GO), or even by 
NCBI Gene Reference into Function (GeneRIF) text string. 	
  

To compare and improve compatibility across data sets, most array data have 
been log2 transformed and rescaled to an average of 8 and a standard deviation of ± 
2 units. This is true of Affymetrix and Illumina array data. However, Agilent data 
report gene expression as the log10 of the ratio between a specific tissue compared 
against a reference pool of multiple tissues (mlratio). RNA-seq data is usually 
normalized to log2 (RPKM + 1).	
  

Many of GN data sets can be searched for traits or transcripts based on QTL 
position and significance levels (LRS or LOD score). Transcripts or proteins that 
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are controlled by variants in or near their parent gene produce so-called cis-acting 
expression QTLs (cis eQTLs) whereas those that are controlled by a more distant 
locus, usually on a different chromosome, produce trans-acting QTLs (trans 
eQTLs) (Fig. 3). Test whether you can find a set of proteins in the mouse liver that 
are strongly controlled by trans eQTLs (see Note 2).	
  

2.3. Create a Trait Collection 	
  
Once you have selected a Data Set and submitted a search, results will appear in a 
Search Results page (Fig. 2C and Fig. 4). From this page, select the individual 
traits, transcripts, or gene markers for additional analysis by adding them to a Trait 
Collection (Fig. 2D). Do this from the Search Results page either by selecting all 
rows with the Select icon (Fig. 4A) or by selecting a subset of rows with the Add 
icon (Fig. 4B). Trait collections are usually restricted to a single species and group. 
Comparisons across groups and species are possible, but in most cases this involves 
assembling several Trait Collections—one for each group. 	
  

From either Search Results or from a Trait Collection (Fig. 5) you can inspect 
traits in greater detail by clicking on their Record ID or Trait ID. This will direct 
you to the Trait Data and Analysis page (Fig. 6), which contains links to other web 
resources and GN tools. 	
  

The GN banner Search pull-down lists additional options, each of which is 
reviewed briefly below (Fig. 2E). Search Databases and Trait Collections are simply 
navigations aids to quickly get back to these two pages. 	
  
   Tissue Correlation computes correlations of gene expression level across sets of 26 
different tissues or 32 different brain regions from inbred (isogenic) strains of mice. 
Variation in expression is purely due to differences among cell and organ systems 
rather than being due to genetic or environmental factors. The output tables and 
graphs are particularly useful when studying genes with minimal annotation or 
when testing the hypothesis that expression of two or more genes are jointly 
regulated across tissues. 	
  

SNP Browser, Interval Analyst, QTLminer all provide three different ways to 
screen for genes and gene variants within defined genomic regions—but currently 
only for the mouse genome. QTLminer is the most comprehensive of the three 
tools, and takes advantage of the many levels of data available in GN. This tool can 
provide output tables that includes many types of QTL information, data on gene 
expression, and genetic variation across multiple mouse groups [13]. 	
  

GeneWiki allows anyone to add notes on genes, transcripts, or proteins to GN. 
It is essentially an open public notepad with good search functions. GeneWiki 
incorporates current NCBI GeneRIF annotations. 	
  

GenomeGraph provides a way to review global genetic modulation for many 
gene expression data sets. This tool plots the physical position of each gene against 
the position of the highest linkage score for the corresponding transcript or probe 
(this function is not yet available for human data sets). GenomeGraph provides two 
complementary overviews (see the tabs) of the distribution of cis- and trans-eQTLs. 
One of these is suitable for figures, while the other is interactive and enables 
zooming and clicking on individual transcript/marker coordinates.  The 
GenomeGraph is used to detect both the cis-acting eQTLs and prominent trans 
eQTL bands—loci that modulate the expression of large numbers of transcripts or 
proteins [14]. Can you use this tool to check for trans eQTL bands in mouse liver 
(see Note 3)? 	
  

Scriptable Interface is a more complex option that enables direct queries of GN 
databases using a set of keywords and commands—an application programming 
interface (API) that can be used to link one web resource with another. It is possible 
to access or download data and tools using R, Python or other code and scripts. The 
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API consists of a query that returns results in a JSON format that is easily loaded 
locally. The R/qtl package, for example, can read GN REST API data by default. 
Examples of such functionality are: 	
  

1. Fetch all genotype data belonging to a cross or sample. 	
  
2.  Fetch all phenotype data belonging to an experiment or population. 	
  
3.  Get the genome scan results for a particular phenotype. 	
  
4.  Get a list of phenotype correlates and their correlations. 	
  
5.  Get a list of phenotypes with a QTL in a given interval. 	
  
6.  Get a list of genes matching a QTL in a given interval. 	
  

The final three pull-down items—Database Information, Data Sharing, and 
Annotations—provide documentation and download tools. 	
  

In addition there are several useful resources available under the Help tab in the 
banner menu (Fig. 2E). Useful guides and tutorials outlining how to use the GN 
web resource can be accessed under the Movies, Tutorials, and HTML Tour 
options. Extremely useful explanations to frequently asked questions and for terms 
and tools used in GN can be found in the FAQ and Glossary of Terms. The glossary 
has been hand curated since the inception of GN and is a great companion guide for 
all new users. 	
  

	
  

3. The GeneNetwork Toolbox 	
  

 Now that you are familiar with the organization of data and typical search 
workflows, we can introduce resources available for trait analysis in the extensive 
GN toolbox. We will explore these tools first at the level of a single trait, and then 
at the level of multiple traits. 	
  

3.1. Tools for single trait analysis	
  
The Trait Data and Analysis page is key to using GN and includes many useful 
tools for studying single traits (Fig. 6).  Options differ by data type and species. A 
trait such as body weight has very different Resource Links than mRNA, protein, 
metabolite, and genotype data. Most data sets that include transcript or protein 
assay measurements include links to resources that provide information about 
function, homology, expression across tissues, and genomic location. These include 
Gene pages at NCBI, OMIM, HomoloGene, UCSC Genome Browser, and BioGPS. 
Other links are focused on protein structure and function, including STRING, 
PANTHER, and Wiki-PI. Gemma and ABA provide access and analysis of 
thousands of transcriptome and in situ expression data sets, respectively. EBI GWAS 
searches human genome-wide association studies for matches to selected transcripts 
or proteins.	
  

The row of icons labeled Add, Find, Verify, GeneWiki etc. link to large GN 
database resources. The Add icon is used to build up collections of traits for network 
analysis in a Trait Collection. Find locates similar expression traits in other data sets 
and other species. GeneWiki provides a summary of gene and protein function based 
on notes made by GN users and published data. It is simple to add your own notes 
to GN by selecting GeneWiki and then New GeneWiki Entry. SNPs links to a 
Variant Browser that is identical to the SNP Browser accessed from the GN banner 
under the Search tab. Verify, RNA-seq, and Probes provide quality control 
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information about transcripts and peptides. Both Verify and RNA-seq link to GN 
mirrors of the Genome Browser. 	
  

The Verify and RNA-seq tools uses the transcript, peptide or probe sequence to 
align against the reference genome. The BLAT reanalysis results and annotations at 
the top of the Trait Data and Analysis page should match, but mismatches are 
frequent and arise from poor annotation, poor sequence selection, or ambiguous 
alignment. The RNA-seq tool performs the same type of BLAT alignment but 
includes tracks with data on all genomic variants segregating between the parents of 
the BXD mouse cohort [15], and expression profiles from whole brain [7] and 
striatum [16] generated by RNA-seq. Sequence variants are displayed in the 
DBA/2J Sequence and Structural Variation track and RNA-seq data from brain 
(B, D, and BXD strains) and striatum (B and D strains) are displayed in the RNA-
seq: Brain (BR) ABI, N tags/nt, adjusted track and the RNA-seq: Striatum (STR) 
ILM, N tags/nt, adjusted track, respectively. These data are useful for visualizing 
variants within genes that may affect expression, and can also be used to determine 
whether variants overlap probe sequences. Array platforms have all been designed 
based on the genome of a single reference genome (C57BL/6J in the case of mice, 
Brown-Norway in the case of rats). The use of a single genome for design purposes 
can result in biased hybridization in array studies and biased alignment in RNA-seq 
studies [17]. The RNA-seq data is also useful for validating expression differences 
detected using array platforms. The related Probes tool is useful only for Affymetrix 
data sets and is used to evaluate the performance of individual array probes. 	
  

3.2. Analysis and mapping methods for single trait analysis	
  
The lower set of four panels (Fig. 6C) on the Trait Data and Analysis page include 
the core computational functions of GN—Basic Statistics, Calculate Correlations, 
Mapping Tools, and Review and Edit Data.	
  

Basic Statistics is used to summarize statistical properties of single (univariate) 
traits. Open this section (click on the bar) and select the Basic Table tab or 
Probability Plot or Bar Graph tabs. These options are reviewed below in detail in 
Case Studies 4.1 and 4.2. 	
  

Calculate Correlations is used to compute the bivariate correlations between 
the reference trait and any other set of traits that has been measured in the same 
Group. Open this section and select a target Database, the number of correlations 
to Return (default is top 500, but the range is between 100 and 20,000), and the 
method of correlation—Pearson or Spearman Rank. Note the tabs: GN can 
compute three types of correlation—Sample r, Literature r, and Tissue r. Sample r 
does what you expect. It computes correlations using values listed at the bottom of 
the page. Literature r computes correlations between genes based on their shared 
vocabularies in PubMed. The same method is applied when using the GCAT tool 
(http://binf1.memphis.edu/gcat/help.html, [18]). Finally, Tissue r computes 
correlations based on variation in expression of genes across about 30 tissues and 
organs in mouse (identical to the Tissue Correlation tool).  All correlation output 
results are displayed in a Correlation Table. Any of the rows in these tables can be 
evaluated in their own Trait Data and Analysis page by selecting the Record ID, or 
large sets of rows and covariates can be analyzed as a group using tools at the top of 
Correlation Table page. Use either the Index check boxes or the Select, Deselect, 
Invert, and Add icons to move traits into a collection.  	
  

 Mapping Tools includes a number of on-line “live” QTL mapping methods. 
The association function in PLINK is currently the default for human GWAS. 
Interval mapping is the default for almost all plant and non-human cohorts. 
Interval mapping exploits Haley-Knott regression equations to evaluate the linkage 
across all autosomes and chromosome (Chr) X. Linkage is displayed either as a 
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likelihood ratio statistic (LRS) or the log of the odds ratio (LOD). Both scores 
provide an estimate of the statistical strength of linkage and the LRS is derived 
from the LOD score by multiplying by 4.61. A linkage probability of 0.001 is 
roughly equivalent to a LOD of 3 and an LRS of 13.8. Genome-wide association 
studies (GWAS) in humans often use a –log10(P) value where P is the probability of 
linkage between differences in genotype and differences in trait or disease severity. 	
  

 Mapping Tools also include Marker Regression, a very simple method that 
computes statistics only for individual marker genotypes. Composite interval 
mapping (Composite) is a variant of simple interval mapping that enables control for 
one or more other markers. It is equivalent to mapping the results of a partial 
correlation. Pair-Scan is an experimental mapping option implemented for larger RI 
sets (samples of 50 or more strains) that searches for epistatic interactions among 
loci.	
  

Review and Edit Data contains a working copy of the trait values for each case. 
Outliers, if any, are highlighted in yellow. Users can manually change trait values, 
select subsets of individuals for further analysis, exclude outlier values, export values 
for analysis offline, or reset to the original values. 	
  

3.3. Tools for multiple trait analysis	
  
A key feature of GN is access to several different levels of data that all originate 
from well defined groups of subjects or cases. The levels can range from genotypes 
to behavior, but can also include different treatments, developmental stages or 
laboratory settings. Users can assemble computationally coherent collections of 
traits to explore joint gene control, gene-by-treatment, gene-by-lab, and gene-by-
environmental interactions. Users may want to examine expression for a single gene, 
gene families, or members of a biological pathway across multiple tissues. To 
accomplish these tasks it is necessary to find the data types and then assemble them 
into a single collection. This is done using the Search Results page, the Trait Data 
and Analysis page, and several other tables generated by tools in GN, particularly 
Correlation Tables. Once these multiscalar data sets have been assembled, a 
number of new tools are available for joint analysis from the Trait Collection (Fig. 
4). Basic actions are similar to those found in the Search Results page, including 
Select, Deselect, and Invert. Other actions include Remove and Export. 	
  

Analysis tools that are optimized for large collections of genes and proteins 
include Gene Weaver, GCAT, Gene Set analysis (WebGestalt), and BNW (Bayesian 
Network Webserver). GCAT uses text mining to determine if a list is functionally 
coherent and related based on the literature [18]. Gene Set searches for significant 
enrichment based on GO categories (functional annotations describing gene 
function or location) and Graph, Matrix, Partial, and Compare are tools that 
leverage correlations to identify patterns and relations among traits. The Graph tool 
is used to construct and visualize correlation networks from selected traits. The lines 
or edges connecting trait nodes can be filtered and exported to the open source 
Cytoscape software platform or graph images can be reconfigured and saved as a 
PDF. Matrix generates correlation matrices from any number of traits using both 
Pearson and Spearman coefficients. Scatter plots can be generated for each pairwise 
comparison. Principal component analysis (PCA), a data reduction and pattern 
detection technique, is also performed and eigenvectors are generated for the 
principal components that capture the majority of the variation in expression of 
selected traits. Eigenvector values can be added to the Trait Collection and are 
handled by GN in the same way as other traits. The pattern of expression captured 
across cases by each eigenvector trait can be used for mapping, to find additional 
correlates, or to check for technical artifacts. 	
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The Partial correlation tool computes correlation between traits after 
controlling for other traits, markers, or cofactors such as age or sex. Partial 
correlations can be calculated for a subset of traits in a Trait Collection or against 
an entire data set. Select at least one Primary trait (X), one or more Target traits 
(Y), and a set of Control traits (Z). Again you have the option of computing either 
Pearson’s r or Spearman’s rho partial correlations. 	
  

The final correlation tool is Compare. This tool is used to identify intersecting 
sets of traits across data sets from the same Group that are correlated with selected 
traits in the Trait Collection based on a user defined threshold. It will essentially 
compute the intersecting values of a Venn diagram using 2 to 20 or more variables 
in the collection.	
  

Tools for exploring the genetic control and mapping of multiple traits from the 
same collection include QTL Map and Heat Map. The QTL Map tool allows users 
to compare QTLs for up to ten traits globally or by single chromosome. This tool is 
useful to visually explore traits that may be modulated by the same chromosomal 
position. The Heat Map tool is used to compare global patterns of genetic 
modulation for up to 500 traits at a time. Individual traits are represented by 
columns with genomic position shown by row. Significant QTLs are indicated for 
each trait as intense blue or red bands depending on whether expression is increased 
by the maternal or paternal allele (blue and red respectively for the BXD RI set). 	
  

The tools available for individual or multiple trait analysis in GN are designed 
for users to explore data sets and detect relations among traits that are driven by 
genetic and non-genetic factors. The underlying genetic variants responsible for 
some of these associations and their potential impact on higher-order phenotypic 
variation can then be evaluated. We provide two case studies below that put these 
tools and data sets into context, and that illustrate how they can be used in a 
systems genetics approach. 	
  

	
  

4. Case Studies and Workflows	
  

In this section we have provided case studies for both mouse and human data sets 
that illustrate the utility of GN. Other case and use studies can be found in this 
book and other publications [19]. 	
  

	
  
4.1. Mouse Case Study	
  

The BXD family of strains and their parents—C57BL/6J (B) and DBA/2J (D)—
differ greatly in their preference and sensitivity to alcohol and many other drugs. As 
a result, the BXDs have been used as a genetic model system to map loci and define 
gene variants that may be involved in addiction. Using data and tools in GN we can 
ask whether there are any gene variants associated with addiction and whether gene 
expression varies as a function of strain and genotype. We can also test the possible 
causes and consequences of variation in gene sequence and gene expression. This 
case study takes you through the main steps in this process. 	
  
1. Navigate to the Select and Search page at www.genenetwork.org. 	
  
2. Choose an expression database by picking the following options. Species =  

Mouse, Group = BXD, Type = Hippocampus mRNA, Data Set = 
Hippocampus Consortium M430v2 (Jun06) RMA (the third data set in this 
menu). For this example we will use an Affymetrix hippocampus expression 
data set that uses the RMA normalization method. This is the most commonly 
used normalization method for Affymetrix arrays and is therefore the best 
choice for comparing across tissue and even species data sets. The hippocampus 
is one of many brain regions important for episodic memory formation and 
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spatial navigation. It is also particularly sensitive to many types of 
environmental and pharmacological perturbations. For more information 
(metadata) about how this and other data sets were generated, click the Info 
button to the right of the data set name. 	
  

3. Search for genes. Enter the following search string in the Combined option: 
"Mean=(8 16) cisLRS=(10 99 10) RIF=addiction" (remove the double quotes). 
This search will return all transcripts (in this case also called probe sets) that 
have a mean log2 expression between 8 and 16 units and whose expression is 
modulated by a cis-acting eQTL with an LRS between 10 and 99 that have 
also been linked to addiction. By using the Combined search field, all three 
components of the query have been combined automatically using a Boolean 
AND operator. The first component—Mean=(8 16)—limits the search to 
transcripts that have moderate to very high expression level. Eight is the average 
log2 expression level for most array expression data sets in GN while 16 is very 
high. Typically, a trait with an average log2 expression value less than 6 is not 
considered expressed. 	
  

The second component of the query—cisLRS=(10 999 10)—limits the 
search to those transcripts associated with a cis eQTL LRS value between 10 
and 99. An LRS score of 10 corresponds to a LOD of 2.2 and is roughly 
associated with a nominal (point-wise) p value of 0.01. Similarly, an LRS of 99 
is equivalent to a LOD of 21.5. The third parameter (also 10) included in the 
query limits how far the eQTL location can be from the corresponding gene 
associated with the mRNA. In this case we set a 10 Mb exclusion limit. Finally, 
the third query term—RIF=addiction—limits the search to genes that have been 
annotated with the term “addiction” in NCBI GeneRif collection. 	
  

4. Click on the Search button to explore the results of this query. The search 
returns 31 records (November 2015). The Symbol and Description columns 
provide the gene symbol and full name. The Record ID column gives the 
probe, exon, or transcript ID that has been used to measure expression. The 
particular part of the mRNA that is the target of the assay is often listed in the 
Description column after the gene name (e.g., "distal 3' UTR)". Gene location 
is given in the Location Chr and Mb column, whereas the location of highest 
LRS associated with the trait is given in the Max LRS Location Chr and Mb 
column. The last Add column lists the additive effect of alleles at the Max LRS 
Location. In this case, the positive and negative values of Add indicate that 
expression is increased by the paternal (D) or maternal (B) allele, respectively. 
All of these Search Result columns can be sorted. Initially the list is sorted 
alphabetically by Symbol but can also be sorted by probe set genomic location 
(Location Chr and Mb) or by eQTL strength (Max LRS). The top 10 unique 
genes sorted by Max LRS include Rb1, Csnk1e, Cntnap2, Cdkn1b, Mpdz, 
Gria1, Comt, Gabra2, Kcnj3, and Slc1a2. Select all and then click Add to move 
all of the search results into a BXD Trait Collection for further analysis.	
  

5. To study the expression of the Rb1 transcript in greater detail, select its Record 
ID or Trait ID (1417850_at) to navigate to the Trait Data and Analysis page 
(Fig. 7).  Each trait can be examined in more detail in this manner, whether it 
is a transcript, peptide, metabolite, genotype, or behavioral trait. There are a 
number of tools for single trait analysis on the Trait Data and Analysis page. 
We now will take you through many of these in the next few steps.	
  

6. Examine the expression of Rb1 across all of the BXD family members included 
in the data set using the Basic Statistics track. Expand the track by clicking the 
“+” symbol or in the gray bar. Under the Include drop-down menu select “BXD 
Only”. The Basic Table provides simple univariate statistics such as N of 
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Samples, Mean, and Range. This particular data set includes 71 samples with a 
Range (fold) of 2.34 fold on this log2 scale. 	
  

The Probability Plot tab is a critical tool for detecting outliers and for 
reviewing the distribution of trait values. If the distribution is close to normal 
then the observed Trait values on the Y-axis will line up well with the Expected 
Z scores on the X-axis. Deviations from the expected straight line of 
normality—an S-shape, a set of abrupt breaks (as here), or a set of ripples—
indicate that one or more large effects may be influencing the distribution. A 
strong QTL or a sex difference can produce such effects. For an example of a 
sex effect (and potential confounder), review the expression of the Xist gene 
(probe set 1436936_s_at). 	
  

Another means to visualize data distributions are with Bar Graph (by rank) 
and Bar Graph (by name). By selecting Bar Graph (by rank) you can see that 
expression of Rb1 is reasonably close to expectation (a normal distribution), 
although there are two or three small breaks. This could indicate the presence 
of one or more loci that have a modest impact on expression and that are 
segregating among the BXD family members. In this case there are no outliers. 	
  

Had outliers been detected it would have been necessary to handle them in 
the Review and Edit Data section toward the bottom of the page. This part of 
the Trait Data page contains a working copy of the data values. Values can be 
deleted or blocked with an X. Data can be modified, winsorized, or truncated to 
make them less extreme. Even a single outlier can have a very adverse impact on 
genetic mapping—often increasing the risk of false-positive QTLs and 
producing Pearson correlations that are inflated. The original values can be 
Reset or downloaded using the Export function.	
  

7. Perform QTL mapping using the Mapping Tools track, below the basic 
statistics and calculate correlations tracks. Very fast interval mapping is a 
powerful feature of GN that makes it possible to carry out complex trait analysis 
of most cohorts in real time. Click on the Compute button under the Interval 
tab using the default options. We already noted that the distribution of Rb1 
expression had some breaks. We can now explore possible causes of these 
disruptions to the expected normal distribution by mapping trait variance. 	
  

The results of whole genome interval mapping are displayed as a graphical 
map with chromosome number and megabase position displayed at the top and 
bottom of the map, respectively. You can change to a genetic map measured in 
centimorgans (cM), but this is rarely useful when a physical map is available. 
The LRS linkage score is displayed on the left Y-axis. Blue, red and green lines 
plot the LRS, the additive coefficient for the B allele (inherited by roughly half 
of the strains from C57BL/6J) and D allele across the genome, respectively. 
The horizontal red and grey lines show the threshold for significant and 
suggestive linkage scores based on mapping 5000 permutations (see the 
Histogram of Permutation Test). A permutation is simply the random 
rearrangement of elements in an ordered list (in this case a list of genotypes and 
associated trait values). A permutation test is a method for evaluating statistical 
significance by randomly reshuffling and recomputing scores for list elements. 
To achieve a significance of p = 0.05, the original association score between 
genotype and trait expression must be greater than at least 95% of all permuted 
associations. All of these calculations, including the default 5001 genome scans, 
and the display, usually take less than a minute to generate. 	
  

The visual display of the graph can be altered by changing the attributes in 
the box above the graph. Note the purple arrowhead at the bottom of the X-
axis that indicates the position of the cognate gene. Here we see strong and 
highly significant linkage between expression of Rb1 and a locus on Chr 14 that 
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overlaps the physical location of the Rb1 gene, a cis eQTL. Change the units to 
LOD in the attribute box above the map and click on the Chr 14 icon to zoom 
in and replot the map using a LOD score scale. 	
  

To look at the relationship between gene expression, genotype, and the 
segregation pattern of parental alleles in greater detail, check the Haplotype 
Analyst box and change the View to 70 to 80 Mb in the attributes box and then 
select Remap. This will zoom in and show the pattern of inheritance for each 
BXD strain with the location of gene models shown at the top of the plot 
followed by a map of the chromosome for each strain (strain name to the right) 
and the corresponding trait value sorted from highest to lowest (value to the 
right of the strain name). The vertical black lines represent the location of 
genotyped markers that reveal whether that position in the genome was 
inherited from the maternal or paternal strain (the corresponding marker names 
are shown at the bottom of the chromosome map). Similar genotypes across a 
set of adjacent markers define a haplotype and are represented here as large 
blocks of green (inherited from the paternal strain) and red (inherited from the 
maternal strain) with intervening undefined grey regions. Somewhere within 
the grey interval a recombination event occurred and more markers will be 
needed to resolve the haplotype blocks more completely. Blue areas are or were 
heterozygous when the strains were genotyped last. You may have already 
noticed the striking segregation of green haplotype blocks at the top and red 
haplotype blocks to the bottom of the chromosome map. Parental alleles at this 
locus are strongly associated with expression variation and this can be seen here 
as BXD strains that have inherited the paternal D allele (in green) have high 
expression of Rb1 and those strains that have inherited the maternal B allele (in 
red) have lower expression (expression values shown for each strain at the far 
right). 	
  

It is often useful to define a confidence interval in which the candidate 
variant or gene driving trait variation is likely to be located based on the 
mapping results. One rough estimate of the confidence interval is the 1.5 LOD 
drop-off which is defined as the interval bordered to the left and right of the 
peak QTL in which the LOD score (represented by the blue line) drops by 1.5 
LOD units. In this example, that would be the point on the blue line to the left 
and right of the peak that represents a value of 15.5 LOD. This can be roughly 
approximated visually from the graph such that the 1.5 LOD confidence 
interval defining the cis eQTL is roughly between 73 and 75 Mb on Chr 14. 	
  

To view the precise association score for any single marker and the 
corresponding chromosomal position, click the ‘Download result in a tab-
delimited text format’ link toward the top left side of the Map Viewer page. 
Note that the peak marker is rs3701623 located on Chr 14 at 73.597 Mb. To 
estimate the amount of trait variance that is genetic and captured by this single 
QTL, navigate back to the main GN Select and Search page (use the Search 
Databases option under the Search dropdown in the banner or click on 
GeneNetwork in the top left corner of the browser window). Enter the marker 
‘rs3701623’ using the Get Any query under Group = BXD, Type = Genotypes, 
Data Set = BXD Genotypes and select Search. This query will return 
information about genotypes at this marker. Select the marker and Add it to the 
Trait Collection. The collection should now contain all 31 genes from the 
previous search results and the marker rs3701623. Select the marker and the 
Rb1 probe set, and then choose the Matrix tool. We will learn more about the 
matrix tool later, but for now we have just generated the Pearson (left value) and 
Spearman Rank (right value) correlation coefficient for our expression trait and 
marker. The Pearson r is 0.83 and the corresponding r2 is ~0.7. In other words, 
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about 70% of the variation in hippocampal Rb1 expression among BXD strains 
is explained by a cis eQTL. 	
  

8. Verify that Rb1 is linked in to addiction or substance abuse in GeneWiki. Rb1 is 
a tumor suppressor with high expression in hippocampus. But is there a link to 
addiction of the type we expect?  From the Wiki pages perform a search for the 
work “addiction”. This will highlight entry 276. However, Rb1 is linked to 
addiction in a different context: the acute need of cells for Myc expression to 
survive. Try this using another gene from the original list—Cdkn1b (see Note 
4). 	
  

9. As shown above, quality control is critical. Both the Verify and the RNA-seq 
tools on the Trait Data and Analysis page are used to confirm the correct 
identity of probe sequences and detect possible problems associated with local 
sequence variants. Probe set 1450486_a_at (Oprl1) is a good example of how 
sequence variants can interfere with expression measurements. Select Oprl1 
probe set 1450486_a_at from the Trait Collection and link to the 
corresponding Trait Data and Analysis page. 	
  

 Confirm involvement of this gene in addiction by clicking the GeneWiki 
link and performing the same analysis as in Step 8. Note that the term 
“addiction” appears in three separate GeneRIF entries. From the Trait Data 
and Analysis page perform quality control by selecting the RNA-seq tool. This 
tool is similar to Verify in that it uses UCSC BLAT to align the probe set to 
the reference genome. The BLAT Search Results page (Fig. 8) summarizes 
alignment scores. Click on the far left browser link of the top row.  	
  

The RNA-seq browser page displays many tracks (Fig. 8 bottom). These 
include the alignment of the 11 probes (black rectangles), the region of the gene 
targeted by the probes (the 3’ UTR, exons, or in rare cases, the introns), 
DBA/2J sequence variants, and RNA-seq expression measurements. Confirm 
that the probes target the right gene (Oprl1) and determine if any variants 
overlap probes and might interfere with expression measurements (Fig. 8). 	
  

Note that the probe set targets Oprl1 correctly. However, several probes 
overlap SNPs (probes 299709 452573; Fig. 8). These SNPs could impact 
measurements of expression in strains that inherit the D allele. To check 
whether or not expression differs between probes that overlap SNPs, use the 
Probes tool in the Trait Data and Analysis page for Oprl1 (probe set 
1450486_a_at). Affymetrix microarrays feature multiple probes whose 
expression is then summarized to get a measure of cognate gene expression. 
The Probes tool allows you to explore individual probe expression, genetic 
mapping, and covariation. In the case of the M430 array used here, expression 
is based on hybridization of 11 perfect match (PM) and 11 mismatch (MM) 
probes (Fig. 9). Use the Select PM button to select the perfect match probes and 
then select the Heat Map icon to look at the eQTL profile for all 11 probes 
(Fig. 9). The heat map shows the location and strength of eQTLs for each 
probe. A strong cis eQTL indicating higher expression in BXD strains that 
have inherited the B allele of Oprl1 (blue, Fig. 9) is only associated with probes 
overlapping SNPs (299709 and 452573). The strong cis eQTL detected for 
Oprl1 is actually a technical artifact caused by sequence variants that disrupt the 
hybridization of probes to their target RNA sequence in strains other than 
those with the reference B haplotype. When exploring eQTLs it is good 
practice to determine: (1) That the assay targets the right genes, and (2) 
Whether or not measurements might be impacted by sequence variants. Try 
this analysis on Kcnj3, probe set 1455374_at (see Note 5). 	
  

Thus far we have searched and returned a list of genes whose expression is 
likely modulated by local sequence variants segregating in the BXD cohort that 
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may play a role in addiction. We identified two genes (Rb1 and Oprl1) whose 
presence on the list is due to different types of technical errors. What about the 
remaining genes? Are these genes connected in any other way? 	
  

10. Select the top nine genes from our Search Results page (1417176_at, 
1434045_at, 1422798_at, 1418664_at, 1448972_at, 1449183_at, 1421738_at, 
1439940_at, 1437920_at, 1421202_at) and Add them to the Trait Collection 
(Fig. 10). 	
  

We can now explore whether these traits are connected at the level of 
genetic regulation or gene expression. Select all traits and then select the Matrix 
tool. The output is a correlation matrix comprised of pair-wise correlations for 
each selected probe set (Fig. 11) and the results of a PCA that will be described 
below (Fig. 12). From the correlation matrix at the top of the page, we can 
explore whether the expression of these traits are correlated in the hippocampus 
of 71 BXD strains. With this number of individuals, a correlation of ~ |0.3| will 
be significant at a p-value less than 0.01, however, only correlation coefficients 
greater than |0.5| are highlighted in the matrix. For each pair-wise correlation, 
it is possible to generate a scatterplot that also displays the associated p-value by 
clicking on each correlation (Fig. 11). Note that nine pairwise correlations are 
significant (p < 0.01) within this gene set. 	
  

Embedded in the Matrix tool is a module to compute principal 
components (PCs) and eigenvector scores. PCA is used to extract shared 
patterns of variation from larger numbers of traits that covary for different 
reasons. For example, the first PC could represent a technical error or batch 
effect, a second PC could correspond to sex differences, and a third PC could 
correspond to variation produced by a gene variant. In many cases, PCs will not 
correspond to any obvious single source of variance.  Scores can be assigned to 
each subject in the analysis for each of the PCs. These PC scores (also known 
as eigenvector scores or even "eigengene" score in transcriptome studies) are 
similar to residuals and have a mean of 0. The Scree Plot describes the fraction 
of variance that is explainable by each of the PCs in descending order. For a set 
of randomly selected transcripts as much as 25% of the variance may be 
described by the first PC—often an indicator of an uncorrected batch effect. 
The Factor Loadings Plot describes how each trait loads onto, or is correlated 
with the first and second PCs (Fig. 12). In this example the first factor, or PC1, 
explains ~28% of the variance in expression of the nine top transcripts from our 
search. The PC scores can be used as composite traits and entered into GN 
collections and workflows just like any other trait. To perform mapping and 
analysis of the PC scores, select the PCA Traits link under PCA Traits (e,g., 
PC01) then review the scores in the corresponding Trait Data and Analysis 
page (Fig. 12). In this example two PCs capture most of the variation in 
expression. Use the Interval tab in the Mapping Traits track to perform 
standard QTL interval mapping. This common source of variation is not 
derived from a single genetic locus as there are no strong QTLs modulating 
either PC. 	
  

11. Construct a network graph from the Trait Collection using the Graph tool. 	
  
Additional tools are available in the Trait Collection to analyze relations among 
the top genes (probe sets) in our list. Select all nine traits and the Graph tool. 
This tool constructs a network graph that shows all possible correlations among 
selected traits at a given threshold (Fig. 13A). Users can control the way the 
graph is displayed using the options provided. The type of network can be 
changed using the Select Graph Method dropdown menu. In addition, line 
color and style, correlation type and threshold, and node label, font, and shape 
are all customizable. High quality PDF or GIF files can also be generated. In 
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our example, Mpdz is the highest connected gene in the network and has four 
connections at a correlation of |0.3| or better (Fig. 13A), in contrast, Comt is 
not connected at all. Highly connected genes, sometimes called network hubs 
or hub genes, are thought to have important biological roles, although this is a 
topic of much debate in systems biology. In less complex systems (flies, worms, 
and yeast), such hub genes are often essential genes required for survival. 
However, in higher organisms the role of such hub genes is less clear. Note, 
that our network of nine genes (or nodes) is much too small to make grand 
biological conclusions, but is sufficient for an exploratory analysis and tutorial. 	
  

12. Test whether a subset of selected expression traits is enriched for biological 
function using the Gene Set tool. Variation or covariation, such as that observed 
using the Matrix (pair-wise correlations) and PCA (data reduction and pattern 
analysis) or the Graph tool (covariation) can indicate underlying genetic control 
or shared biological function. The Gene Set tool in the Trait Collection page 
can be used to investigate whether selected sets of genes share common 
biological functions. Select Mpdz and its correlates (Chrna4, Gria1, Csnk1e, and 
Cntnap2) and the Gene Set tool (Fig. 13B). This tool uses WebGestalt to 
compare functional GO anotations within the selected genes compared to a 
background gene list that includes all of the genes (probe sets) included on the 
M430 microarray used to generate this data set. Select View results to display a 
directed acyclic graph of significantly enriched functional categories (Fig. 13C). 
Even though the gene list submitted is quite small (only five genes), several 
categories are enriched at an adjusted p-value less than 0.05. These categories 
include signaling (Chrna4, Cntnap2, Mpdz, and Csnk1e), part of neuron 
projection (Chrna4, Cntnap2, and Mpdz), and regulation of action potential 
(Chrna4 and Mpdz). Click on the Trait ID of each gene in the Trait Collection 
and use the GeneWiki tool to explore their function in more detail. These genes 
function in overlapping biological pathways, play a critical role in synaptic and 
intracellular signaling, and have been linked to addiction. In addition, 
expression of all genes is correlated and the expression of each is variable in 
BXD hippocampus—likely due to the presence of local sequence variants that 
modulate expression. 	
  

13. Perform a reverse systems genetics analysis to dissect the consequences of 
genomic variation on higher order traits by selecting the link for Trait ID 
1449183_at (Comt) to navigate to the Trait Data and Analysis page. 	
  

Now that we have initiated a functional search and explored variation and 
covariation among sets of genes, let us use the vast data resources available in GN to 
perform a reverse systems genetics analysis to dissect the consequences of genomic 
variation on higher order traits. From the Trait Data and Analysis page for Comt, 
navigate to the GeneWiki entry. This gene has been extensively studied in human 
populations and in the BXD cohort. A common polymorphism in humans results in 
the substitution of the amino acid valine (Val) to methionine (Met), and a decrease 
in activity. COMT is involved in the degradation of catecholamines, including the 
neurotransmitters adrenaline, noradrenaline and dopamine. COMT alleles have 
been associated with subtle differences in risk of psychiatric disease and difference 
in cognition and attention. A Comt polymorphism also segregates among the BXD 
population such that the maternal strain and those BXD progeny that have 
inherited the B allele have a ~200 bp insertion (a type of mutational event in which 
additional DNA is added to the genomic sequence) in the 3’ UTR that leads to 
truncation when compared to the paternal haplotype (D allele) [7]. Interestingly, for 
some Comt probe sets (1449183_at) this mutation leads to higher expression in 
those strains that have inherited the B allele, unless the probe sets target the most 
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distal part of the 3’ UTR (1418701_at) that is not expressed in those cases. In the 
latter case, higher expression is observed in those strains that have inherited the D 
allele. To look at this interesting discordance between probe sets, use the Find tool 
to identify probe sets targeting Comt in multiple expression data sets from BXD. 
Using the tools introduced to you earlier in this case study, compare where each 
Comt probe set (1418701_at and 1449183_at) aligns to the reference genome, the 
strain distribution of expression for each probe set, and the difference in cis eQTL 
mapping (see Note 6). Note the different Record IDs for Comt that correspond to 
different probes or probe sets across different microarray platforms. Different 
regions of the Comt gene are being targeted by each probe or probe set, and this is 
generally true for most genes and microarray platforms.  The Find tool can also be 
used to find corresponding probe sets for the same gene in human and rat data sets. 	
  

We know that the expression of Comt varies across the BXD set and we now 
know from GeneWiki that the causal mutation underlying this variation is an 
insertion. We can use GN data sets to determine the functional consequences of 
this variation. In other words, we can ask what phenotypes are controlled by the 
genetic variation at the Comt locus. To do this we can navigate back to the Select 
and Search page and identify phenotypes from the BXD Phenotypes BXD 
Published Phenotypes data set that map back to the Comt locus. In the Combined 
search option enter “LRS=(9 99 chr16 16 22)” to identify all phenotypes that have a 
peak QTL located within 2 Mb of the Comt locus on Chr 16 at 18.4 Mb. This 
should return at least 12 traits that we can add to our collection. Do the traits 
returned make sense given the role of Comt in the regulation of catecholamine 
(epinephrine, norepinephrine, and dopamine) levels? The expression of these 
phenotypes is controlled by a QTL that precisely overlaps the location of Comt. To 
compare the overlap in QTL mapping among these phenotypes and with the Comt 
probe set, select all phenotype traits and the expression trait in the Trait Collection 
and select the Heat Map tool. For finer mapping resolution up to 10 traits can be 
mapped together using the QTL Map tool. 	
  

In many cases this type of a reverse genetic analysis is complicated by the 
linkage disequilibrium inherent in the BXD population, which has an average 
haplotype block of about 50 Mb and an eQTL mapping resolution of around 1 Mb. 
This often results in the presence of several genes and variants within a QTL 
confidence interval that could control trait expression. In our case, Comt is the only 
gene within a 4 Mb interval that contains a variant. Thus, traits that map back to 
this locus are controlled by the variation in Comt. You can also use this same search 
query in different BXD expression data sets to find downstream expression traits 
(probe sets that map back to the Comt locus or are controlled by a trans eQTL that 
originates from the Comt locus) or to find phenotypes or expression traits that 
correlate with Comt expression. 	
  

In the preceding series of examples we have illustrated how to query the GN 
database and use some of the many tools available to perform systems level analyses, 
including genetic mapping, exploring patterns of covariation and performing a 
reverse genetics systems analysis to uncover the functional impact of sequence 
variation. All examples rely on a large and well characterized genetic reference 
population, the BXD cohort. In the next example we will explore some of the ways 
to search human data sets available in GN. 	
  

	
  
4.2. Human Case Study 	
  

In this example we will make use of a publicly available multi-level data set collected 
from a human cohort. As in the mouse case study, navigate to the Select and Search 
page and this time select Species = Human, and Group = Liver: Normal Gene 
Expression with Genotype (Merck). Clicking on the Info button will show that this 
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data set was originally published in 2008 [20] and then in 2010 [21] and was 
specifically used to examine gene expression and cytochrome P450 activity in 
human liver. Click on the Type dropdown menu to see the types of data that are 
available for this group. You will see that there are two data types available for this 
group. The Phenotypes data set (named as HLC Published Phenotypes) consists of 
phenotypes collected from this population that can be used for genetic mapping. 
Additionally, for some of the human cohorts including this particular group, the 
Phenotypes category can also include some individual level demographic data such 
as age, race, socio-economic status, etc. The other data type for this group is 
microarray gene expression data for the liver (Liver mRNA). Additionally, there is 
genotype data available for this cohort and users can perform basic genetic 
association analysis within GN using PLINK. 	
  

Using a simple workflow, we will demonstrate how functions in GN enable 
secondary analysis of published human data. We start out with basic demographic 
data—the age of subjects—and examine what we can learn about age-related gene 
expression changes in the liver. 	
  
1. Select Type = Phenotype and enter the wildcard symbols * or ? in the Get Any 

search box. These wildcards will retrieve all records available for this cohort in 
the database. As of November 2015, there are 17 records in the Phenotype 
category for this group and include three demographic variables, twelve 
metabolic and physiologic traits, and two morphometric traits. Can you now 
use the Matrix and Graph tools that were described in the above mouse case 
study to inspect the correlation structure among these demographic variables 
and the different phenotypes (see Note 7)?  	
  

2. Click on the Record ID 10001 (Demographics, age: Age [year]) to open the 
Trait Data and Analysis page for the age data. Notice that the layout of the 
page is similar to that of the expression traits described in the mouse case study, 
but without the Resource Links and probe tools that are relevant to gene 
expression traits. Examine the descriptive statistics and distribution profiles for 
this data using the Basic Statistics track. You will see that the mean age is 
about 50 years (±17 SD) and ranges from 1 to 94 years. 	
  

3. Given this wide range in sample age, we can now query if age is associated with 
differences in gene expression in the liver. Open the Calculate Correlations 
track and Select Database = GSE9588 Human Liver Normal (Mar11) Both 
Sexes. It is also possible to stratify the analysis by sex by choosing either the 
male or female expression data. For this example, we will retrieve the top 500 
transcripts that have the highest correlation with age in both sexes. Select 
Pearson and click Compute. The result of this analysis will be displayed in the 
Correlation Table page. The top of this page will display actions and tools as in 
the Trait Collection page (Fig. 5).  The main correlation results are in the 
Sample r and Sample p(r) columns (Pearson correlations and p-values, 
respectively) (Fig. 14A). To access individual correlation plots, click on an r 
value and this will display a Sample Correlation Scatterplot with the trait on 
the X-axis (in this case, age) and the mRNA expression on the Y-axis (Fig. 
14B). For this example, click on the correlation (r value) for the 12th transcript 
in the list (mitochondrial ribosomal protein L9, MRPL9) and we see that the 
expression of this mitochondrial ribosomal protein (MRP) gene is negatively 
correlated with age. You can customize the scatterplot by selecting Show 
Options in the Sample Correlation Scatterplot and setting your own 
preferences. For instance, in this example (Fig. 14B), the axes have been 
renamed from the default and the sample ID tag hidden. 	
  

4. The entire correlation results table can be exported by clicking on the Download 
Table button. Additionally, you can also select a set of records based on 
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correlation values using AND/OR operators by clicking the More Options 
button and setting the selection criteria. In the example in Figure 14, all 
transcripts that are negatively correlated with age are selected by setting the 
Pearson correlations to range between r > –1.0 AND r < 0 (Fig. 14C). 	
  
5. As described above, the GeneWeaver (http://ontologicaldiscovery.org), 
GCAT, and Gene Set buttons at the top of the page allows users to seamlessly 
connect with other external bioinformatics tools for additional analyses. After 
selecting by correlation range, click the Gene Set tool to import your gene list 
from the GN correlation table directly to WebGestalt for GO enrichment 
analysis. This will reveal if the transcripts that are negatively correlated with age 
are enriched for any biologically relevant functions. Select View results and 
carefully examine the graph of enriched functional categories. The most 
enriched GO categories in this list of transcripts that are negatively correlated 
with age include mRNA metabolic process and ribonucleoprotein complex 
components (Fig. 15A). Now go back to the Correlation Table page that has 
the negatively correlated transcripts selected. From here, clicking the GCAT 
icon exports your selections as a gene list for a network analysis that examines 
imputed functional relatedness based on published abstracts and text mining 
(Fig. 15B). This quick analysis indicates that ribosomal genes are down-
regulated in expression during aging. The negative correlation between MRP 
genes and age is striking, and members of this family of genes modulate aging 
and lifespan in mice and C. elegans [22].	
  

Now that we have performed a GO analysis of the transcripts that are 
negatively correlated with age, repeat the analysis above with transcripts that are 
positively correlated and demonstrate increased expression with age (see Note 
8).  

While mapping functions in GN are better optimized for model 
organisms and standard test crosses, GN also provides an interface to PLINK 
for performing simple GWAS in humans. Below we conclude this case study 
with a demonstration of this mapping tool. 	
  

6. So far, we have used a wildcard search key to retrieve all the trait data available 
for the Merck liver cohort and examined gene expression changes associated 
with age. Now to perform a genetic association analysis using the phenotype 
data, open the Trait Data and Analysis page for Record ID 10015. This is 
CYP2C8 enzymatic activity measured in 362 cases. 	
  

7. Using the Basic Statistics track, note that unlike the age data, which had a 
normal distribution, this phenotype has a highly skewed distribution. This 
phenotype provides an example in which the choice between Pearson and 
Spearman Rank in the Calculate Correlation section has a significant impact 
on the resulting list of correlated genes. First, perform a Pearson correlation and 
retrieve just the top 100 correlates from the GSE9588 Human Liver Normal 
(Mar11) Both Sexes data. Perform the same analysis but this time select the 
Spearman Rank option. Compare the two correlation tables. Note that while 
the top gene for the Pearson correlation is TOMM40L (ID 10023831160), the 
top transcript computed using Spearman rho is CYP2C8 itself (10033668843). 
The scatter plots for the Pearson r and Spearman rho reveals why the Spearman 
rank correlation is better suited for this CYP2C8 enzymatic activity data and, 
from the Spearman correlation table, we find that CYP2C8 enzymatic activity 
is correlated with the expression of a number of other cytochrome P450 genes. 	
  

8. Now we test whether variation in CYP2C8 enzyme activity and CYP2C8 
expression share common genetic causes. From the Trait Data and Analysis 
page for record ID 10015, navigate to the Mapping Tools section. This tool 
provides a quick but basic interface to PLINK [23]. Note that you can set the 
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thresholds for the minor allele frequency and as well as the p value. The current 
version of this function in GN allows only the basic genetic association tests 
and users cannot set the threshold for Hardy-Weinberg equilibrium or include 
other covariates for population structure or demographic covariates in the 
association model. So use this tool with these caveats in mind (and compare 
with GN2 which does include some of these important functions). To initiate 
the genetic association test, click the Compute Using PLINK button and Keep 
outliers for this preliminary test. Perform the same analysis for CYP2C8 
expression (10033668843) to identify eQTLs. 	
  

9. The mapping result will be displayed as a Manhattan plot with chromosomal 
location on the X-axis and the –log10(p) values on the Y-axis (Fig. 16). For the 
enzyme activity phenotype, the top significant association (p < .0000001) is 
with SNP rs6508937 chromosome 19. Clicking on the SNP Name (rsID) will 
take you to NCBI’s dbSNP page for that particular SNP which will contain 
additional information on the type of variation, the ancestral allele, minor allele 
frequency, etc. For the expression trait, the most significant association is with 
SNP rs10964657 on Chr 9 (p < .0001). Surprisingly, in this case, the 
comparison of the two Manhattan plots does not flag any common SNPs and 
therefore does not provide support for the hypothesis that covariation in 
expression of transcripts and enzymes are due to shared genetic causes. 	
  

5. Future Directions and Conclusions	
  

	
  
One of the main values of GN is its vast resource of data that enables both 
exploratory data-mining as well as specific hypothesis testing and cross-correlations 
between phenotypes at many scales. At the end of 2015, GN contained 578 systems 
genetics data sets for eight species and well over 70 different cell, tissue, and organ 
types making it a 160 GB database of genotypes and well-structured phenotypes. 
The amount of data in GN is growing rapidly: 255 datasets have been added in the 
past two years, compared to ~100 in the preceding decade. With this volume of 
data, search is a key feature for analysis and exploration. GN allows searching 
through genomic, genetic and phenotype data contained in the database. Users can 
then select multiple datasets and perform analysis on selected genes, traits and 
collections. The web-browser interface allows for interactive exploration of GN 
resources and the use of built-in analysis tools. This allows biomedical researchers to 
explore the data without training in more advanced bioinformatics programming 
languages, such as R and Python. 	
  

GN started out as a simple database and web site that was used primarily for 
analysis of mouse, rat, and human genes, chromosomes, and linked phenotypes. GN 
has now transformed into a service for on-line QTL mapping, eQTL analysis, and 
systems genetics. GN allows researchers to upload and store their own research 
data, run analyses—including QTL mapping, GWAS, and network analysis, 
generate publishable figures, compare results with those of other datasets, and 
explore relations between QTLs, genes, and phenotypes. 	
  

In this chapter we have highlighted the potential of GN by discussing built-in 
functionality and providing a few use cases. GN is an evolving service.  The goals 
and challenges are to integrate new and sophisticated mapping and analysis features 
while maintaining an easy user interface in a structured environment and providing 
a powerful REST programming interface for power users. The new version of GN 
(GN2) will provide greater flexibility and additional features such as the use of 
generalized linear mixed models (LMMs), QTL mapping with covariates, and 
Weighted Gene Coexpression Analysis (WGCNA) [24]. These tools are already 
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available in the beta-release of the next generation of GN2 (Fig. 2).  There are 
many packages and web services available that can do individual components of a 
quantitative genetics or systems genetics analysis well, such as QTL mapping or 
data reduction and organization. However, there are no other resources that provide 
both a data repository and an integrated set of tools and services for systems 
genetics. Because GN and its environment consist of free and open source software, 
the whole system is easily installed and deployed locally allowing for coexistence of 
both a public data resource (the heart of GN) and local (private) data. It is even 
possible to rebrand the webserver and make it outward facing for new projects or 
institute. 	
  

6. Notes	
  

1. Select Species = Human, Group = All Tissues..., Type = Frontal Cortex 
mRNA. Click on the Default button to lock-in these settings. Now review 
the Quick HELP Examples and User's Guide. The final query string 
should be entered into the Combined search. It should look like this: 
POSITION=(chr21 0 1000) MEAN=(4 1000) and should generate 28 hits. 
To focus on genes involved in Down syndrome, also known as Trisomy 21, 
add RIF=trisomy. This will trim the set down to four hits.	
  

2. Select Species = Mouse, Group = BXD, Type = Liver Proteome, Data Set = 
EPFL/ETHZ BXD Liver, Chow Diet... Click on the Default button to 
lock-in these settings. Review the Quick HELP Examples and User's 
Guide. The query string should be entered into the Get Any search. It 
should look like this: transLRS=(20 999 10) and should generate ~136 hits. 
This search will return all trans QTLs with an LRS between 20 and 999 
using a 10 Mb window. Sort the results by the Max LRS Location column 
and look for patterns in the types of proteins that map to the same eQTL 
location; e.g. Chr 5 at about 127–128 Mb and Chr 10 at 107 Mb. These 
are potential trans regulatory regions.  

3. Yet another way to visualize whole data sets and search for regulatory 
regions would be to select GenomeGraph from the Search tab in the banner 
menu. Select the “EPFL…” data set described above in Note 2 and choose 
the Mapping option. This should generate a graph that shows genome 
location on the X-axis (each block is a chromosome) and position of the 
gene on the Y-axis. Each red cross represents a significant association at a 
false discovery rate (FDR) less than 0.2 (default is set to 0.2 or a FDR of 
20%). Note the vertical bands (or trans bands) that indicate a number of 
significant associations on several chromosomes, including Chr 5. In 
contrast to trans eQTLs, cis eQTLs are indicated as a red cross on the 
diagonal (a significant association that corresponds to the location of the 
gene).	
  

4. Check the function of Cdkn1b by selecting Gene Wiki from the dropdown 
menu under the Search tab in the banner menu and entering the gene name 
in the box and selecting submit. Inspect the entries and then perform a 
search for the term “addiction”. Again, the term addiction (entry 799) is 
used in an interesting way, “Data indicate that the addiction of MYCC-
amplified ovarian cancer cells to MYCC differs…”.	
  

5.  The probe set for Kcnj3 appears to align far beyond (distal to) the known 
limits of the gene. To verify this, perform the RNA-seq BLAT alignment, 
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click on the browser link (far left), and then click on the zoom out 10x 
button twice. Note that the RNA-seq tracks (blue and red) show intense 
expression in the region well beyond the standard model 3’ UTR. This is 
not unusual; 3’ UTRs are often not well annotated. The probe set actually 
does target the gene, and does so at the distal part of the 3’ UTR. Two of 
the probes overlap SNPs (736871 and 725381), and both are associated 
with strong cis eQTL artifacts (see Heat Map).  

6.  To get to the Find tool you must navigate to the Trait Data and Analysis 
page for the gene (or probe set) of interest. Use this page or an existing 
BXD Trait Collection if active from the mouse case study. Alternatively, 
start over from the main search page by searching for Comt in most open 
BXD or even human lymphoblastoid and some aging brain expression data 
sets (Groups from Meyers and Liang).  For Comt, the Find tool will return 
a number of results from four human data sets, four rat data sets and over 
20 mouse data sets. For many of these data sets the expression of Comt is 
measured from multiple probes. For mouse and human data sets, the 
expression of each probe set appears to vary despite targeting the same gene 
(see Mean Expr or Mean Expression column). Note the large number of 
probes for data sets annotated with the term exon; exon-level microarrays 
have probes designed to target each feature of a transcript (UTRs, introns 
and exons). Explore each probe set for Comt by clicking on the Record ID 
for 1418701_at and 1449183_at using Tissue = Hippocampus and 
Dataset= Hippocampus Consortium M430 (Jun06) RMA. You will be 
redirected to the Trait Data and Analysis page for each record where you 
can compare the Comt transcript feature targeted by each probe set using 
the Verify or RNA-seq tool, explore the distribution of expression across 
BXD strains using the Basic Statistics track and Probability Plot and Bar 
Graph (by rank) options, and compare allelic effects and cis eQTL 
mapping using the Mapping Tools track and the Interval mapping option. 
You should see that probe sets targeting the distal end of the Comt 
transcript (the distal 3’ UTR, probe set 1418701_at) have a very different 
pattern of expression across inbred strains of mice and the BXD panel 
when compared to probe sets that target coding exons or more proximal 
regions of the 3’ UTR (probe set 1449183_at). 

7 Start by selecting all 17 records from the Search Results page and Add to 
Trait Collection. From the Trait Collection page, select all 17 records and 
then click the Matrix tool. For a graphical visualization of the correlation 
among the different variables select the Graph tool. Try any of the network 
methods from the Select Graph Method and set the correlation to |0.25| 
with Pearson as Correlation Type. By examining the correlation matrix and 
the network graphs, you will learn that the various enzyme activity traits 
form a correlated network. While ethnicity and sex show no correlation 
with any of the traits, age is positively correlated with weight, which, as 
might be expected, has a strong positive correlation with BMI. 

8 Transcripts from the Correlation Table that are positively correlated with 
age can be selected by setting the More Options track to r > 0 AND r < 1.0. 
Alternatively, a quicker way is to simply click the Invert Select option. Send 
this list of genes to WebGestalt by clicking the Gene Set tool. Note that the 
enrichment p values for this set of genes positively correlated with age are 
not as significant as for those that are negatively correlated with age.	
  

 



21  	
  Mulligan and colleagues	
  

21 
	
  

	
  

	
  

Acknowledgment	
  

We thank Lei Yan, Arthur Centeno, and Zachary Sloan, for their many 
contributions to building and maintaining GN over the past decade. GN code has 
benefited greatly from contributions by Jintao Wang, Sam Ockman, Xiaodong 
Zhou, Ning Liu, and Alex G. Williams, and Drs. Rudi Alberts, Arends, Elissa J. 
Chesler, Kenneth Manly, Danny and Evan G. Williams. Support for GeneNetwork 
has been provided by NIH grants U01AA013499, U01AA16662, U01AA014425, 
P20DA21131, U01CA105417, and U24 RR021760. GN is also generously 
supported by the UT Center for Integrative and Translational Genomics, and funds 
from the UT-ORNL Governor's Chair. 	
  

	
  
References

1.	
  Manly	
  KF,	
  Olson	
  JM	
  (1999)	
  Overview	
  of	
  QTL	
  
mapping	
  software	
  and	
  introduction	
  to	
  
map	
  manager	
  QT.	
  Mamm	
  Genome	
  10:	
  
327-­‐334.	
  

2.	
  Williams	
  RW	
  (1994)	
  The	
  Portable	
  Dictionary	
  
of	
  the	
  Mouse	
  Genome:	
  a	
  personal	
  
database	
  for	
  gene	
  mapping	
  and	
  
molecular	
  biology.	
  Mamm	
  Genome	
  5:	
  
372-­‐375.	
  

3.	
  Chesler	
  EJ,	
  Lu	
  L,	
  Shou	
  S,	
  Qu	
  Y,	
  Gu	
  J,	
  et	
  al.	
  (2005)	
  
Complex	
  trait	
  analysis	
  of	
  gene	
  
expression	
  uncovers	
  polygenic	
  and	
  
pleiotropic	
  networks	
  that	
  modulate	
  
nervous	
  system	
  function.	
  Nat	
  Genet	
  37:	
  
233-­‐242.	
  

4.	
  Andreux	
  PA,	
  Williams	
  EG,	
  Koutnikova	
  H,	
  
Houtkooper	
  RH,	
  Champy	
  MF,	
  et	
  al.	
  
(2012)	
  Systems	
  genetics	
  of	
  metabolism:	
  
the	
  use	
  of	
  the	
  BXD	
  murine	
  reference	
  
panel	
  for	
  multiscalar	
  integration	
  of	
  
traits.	
  Cell	
  150:	
  1287-­‐1299.	
  

5.	
  Chesler	
  EJ,	
  Wang	
  J,	
  Lu	
  L,	
  Qu	
  Y,	
  Manly	
  KF,	
  et	
  al.	
  
(2003)	
  Genetic	
  correlates	
  of	
  gene	
  
expression	
  in	
  recombinant	
  inbred	
  
strains:	
  a	
  relational	
  model	
  system	
  to	
  
explore	
  neurobehavioral	
  phenotypes.	
  
Neuroinformatics	
  1:	
  343-­‐357.	
  

6.	
  Wang	
  J,	
  Williams	
  RW,	
  Manly	
  KF	
  (2003)	
  
WebQTL:	
  web-­‐based	
  complex	
  trait	
  
analysis.	
  Neuroinformatics	
  1:	
  299-­‐308.	
  

7.	
  Li	
  Z,	
  Mulligan	
  MK,	
  Wang	
  X,	
  Miles	
  MF,	
  Lu	
  L,	
  et	
  al.	
  
(2010)	
  A	
  transposon	
  in	
  Comt	
  generates	
  
mRNA	
  variants	
  and	
  causes	
  widespread	
  
expression	
  and	
  behavioral	
  differences	
  
among	
  mice.	
  PLoS	
  One	
  5:	
  e12181.	
  

8.	
  Williams	
  EG,	
  Mouchiroud	
  L,	
  Frochaux	
  M,	
  
Pandey	
  A,	
  Andreux	
  PA,	
  et	
  al.	
  (2014)	
  An	
  

evolutionarily	
  conserved	
  role	
  for	
  the	
  aryl	
  
hydrocarbon	
  receptor	
  in	
  the	
  regulation	
  
of	
  movement.	
  PLoS	
  Genet	
  10:	
  e1004673.	
  

9.	
  Wang	
  X	
  PA,	
  Mulligan	
  MK,	
  Williams	
  EG,	
  Mozhui	
  
K,	
  et	
  al.	
  (2016)	
  Joint	
  mouse-­‐human	
  
phenome-­‐wide	
  association	
  to	
  test	
  gene	
  
function	
  and	
  disease	
  risk.	
  Nature	
  
Communications	
  in	
  press.	
  

10.	
  Chesler	
  EJ,	
  Lu	
  L,	
  Wang	
  J,	
  Williams	
  RW,	
  Manly	
  
KF	
  (2004)	
  WebQTL:	
  rapid	
  exploratory	
  
analysis	
  of	
  gene	
  expression	
  and	
  genetic	
  
networks	
  for	
  brain	
  and	
  behavior.	
  Nat	
  
Neurosci	
  7:	
  485-­‐486.	
  

11.	
  Peirce	
  JL,	
  Lu	
  L,	
  Gu	
  J,	
  Silver	
  LM,	
  Williams	
  RW	
  
(2004)	
  A	
  new	
  set	
  of	
  BXD	
  recombinant	
  
inbred	
  lines	
  from	
  advanced	
  intercross	
  
populations	
  in	
  mice.	
  BMC	
  Genet	
  5:	
  7.	
  

12.	
  Taylor	
  BA,	
  Heiniger	
  HJ,	
  Meier	
  H	
  (1973)	
  
Genetic	
  analysis	
  of	
  resistance	
  to	
  
cadmium-­‐induced	
  testicular	
  damage	
  in	
  
mice.	
  Proc	
  Soc	
  Exp	
  Biol	
  Med	
  143:	
  629-­‐
633.	
  

13.	
  Alberts	
  R,	
  Schughart	
  K	
  (2010)	
  QTLminer:	
  
identifying	
  genes	
  regulating	
  quantitative	
  
traits.	
  BMC	
  Bioinformatics	
  11:	
  516.	
  

14.	
  Overall	
  RW,	
  Kempermann	
  G,	
  Peirce	
  J,	
  Lu	
  L,	
  
Goldowitz	
  D,	
  et	
  al.	
  (2009)	
  Genetics	
  of	
  the	
  
hippocampal	
  transcriptome	
  in	
  mouse:	
  a	
  
systematic	
  survey	
  and	
  online	
  
neurogenomics	
  resource.	
  Front	
  Neurosci	
  
3:	
  55.	
  

15.	
  Wang	
  XS,	
  Agarwala	
  R,	
  Capra	
  JA,	
  Chen	
  ZG,	
  
Church	
  DM,	
  et	
  al.	
  (2010)	
  High-­‐
throughput	
  sequencing	
  of	
  the	
  DBA/2J	
  
mouse	
  genome.	
  Bmc	
  Bioinformatics	
  11.	
  

16.	
  Bottomly	
  D,	
  Walter	
  NA,	
  Hunter	
  JE,	
  Darakjian	
  
P,	
  Kawane	
  S,	
  et	
  al.	
  (2011)	
  Evaluating	
  



	
  

22 
	
  

gene	
  expression	
  in	
  C57BL/6J	
  and	
  
DBA/2J	
  mouse	
  striatum	
  using	
  RNA-­‐Seq	
  
and	
  microarrays.	
  PLoS	
  One	
  6:	
  e17820.	
  

17.	
  Ciobanu	
  DC,	
  Lu	
  L,	
  Mozhui	
  K,	
  Wang	
  X,	
  Jagalur	
  
M,	
  et	
  al.	
  (2010)	
  Detection,	
  validation,	
  
and	
  downstream	
  analysis	
  of	
  allelic	
  
variation	
  in	
  gene	
  expression.	
  Genetics	
  
184:	
  119-­‐128.	
  

18.	
  Homayouni	
  R,	
  Heinrich	
  K,	
  Wei	
  L,	
  Berry	
  MW	
  
(2005)	
  Gene	
  clustering	
  by	
  latent	
  
semantic	
  indexing	
  of	
  MEDLINE	
  
abstracts.	
  Bioinformatics	
  21:	
  104-­‐115.	
  

19.	
  Williams	
  RW,	
  Mulligan	
  MK	
  (2012)	
  Genetic	
  
and	
  molecular	
  network	
  analysis	
  of	
  
behavior.	
  Int	
  Rev	
  Neurobiol	
  104:	
  135-­‐
157.	
  

20.	
  Schadt	
  EE,	
  Molony	
  C,	
  Chudin	
  E,	
  Hao	
  K,	
  Yang	
  X,	
  
et	
  al.	
  (2008)	
  Mapping	
  the	
  genetic	
  
architecture	
  of	
  gene	
  expression	
  in	
  
human	
  liver.	
  PLoS	
  Biol	
  6:	
  e107.	
  

21.	
  Yang	
  X,	
  Zhang	
  B,	
  Molony	
  C,	
  Chudin	
  E,	
  Hao	
  K,	
  
et	
  al.	
  (2010)	
  Systematic	
  genetic	
  and	
  
genomic	
  analysis	
  of	
  cytochrome	
  P450	
  
enzyme	
  activities	
  in	
  human	
  liver.	
  
Genome	
  Res	
  20:	
  1020-­‐1036.	
  

22.	
  Houtkooper	
  RH,	
  Mouchiroud	
  L,	
  Ryu	
  D,	
  
Moullan	
  N,	
  Katsyuba	
  E,	
  et	
  al.	
  (2013)	
  
Mitonuclear	
  protein	
  imbalance	
  as	
  a	
  
conserved	
  longevity	
  mechanism.	
  Nature	
  
497:	
  451-­‐457.	
  

23.	
  Purcell	
  S,	
  Neale	
  B,	
  Todd-­‐Brown	
  K,	
  Thomas	
  L,	
  
Ferreira	
  MA,	
  et	
  al.	
  (2007)	
  PLINK:	
  a	
  tool	
  
set	
  for	
  whole-­‐genome	
  association	
  and	
  
population-­‐based	
  linkage	
  analyses.	
  Am	
  J	
  
Hum	
  Genet	
  81:	
  559-­‐575.	
  

24.	
  Langfelder	
  P,	
  Horvath	
  S	
  (2008)	
  WGCNA:	
  an	
  R	
  
package	
  for	
  weighted	
  correlation	
  
network	
  analysis.	
  BMC	
  Bioinformatics	
  9:	
  
559.	
  

	
  
	
   	
  



23  	
  Mulligan and colleagues	
  

23 
	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

	
  
	
  
	
  

	
  
 
Figure 1. Organization of data sets in GeneNetwork 	
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Table 1. A sample of well characterized human and mouse data sets. Many of the Data Sets are amenable 
to systems genetics mapping and other methods and are accessible at GeneNetwork. The Description and 
Usage column provides details about the data set and potential usage. Note that only the first three human data 
sets have both genotype and gene expression data and only the third data set features genotypes, gene 
expression, and higher order trait data in the form of metabolic phenotypes. 
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Figure 2. GeneNetwork main search page and organization. Most analyses in GeneNetwork will follow the 
steps shown in panels A through D. In this workflow, a data set is selected (A) and mined for traits of interest 
based on user search queries (B).  Traits are then selected from the search (C) and placed in a collection for 
further inspection and quantitative analysis (D). The banner menu contains additional search options and 
helpful resources under the Search and Help tab, respectively (E). 
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Figure 3. Local or distant modulation of gene expression in the hippocampus of BXD strains. QTL 
maps are shown for Alad and Atf4 in the top and bottom panels with the association score (LOD) plotted on 
the Y axis across the genome (X-axis). Chromosomes and megabase position are shown at the top and 
bottom of the graph, respectively. Expression of Alad is modulated by a local cis eQTL whereas expression 
of Atf4 is modulated by a distant trans eQTL. The sequence variant underlying expression of Alad is actually 
a copy number variant such that the parental DBA/2J strain and BXD strains that have inherited the D allele 
at this locus have additional copies of the gene and higher expression (indicated by the green line 
associated with the QTL peak in blue). The expression of Atf4 is modulated from a distal region on Chr 1. 
BXD strains that have inherited the B allele from the C57BL/6J parent at the Chr 1 locus have higher 
expression of Atf4. This distal region on Chr 1 (often referred to as QTL rich region 1 or QRR1) is a major 
regulatory locus of many expression and behavioral traits. The additive effect is shown in green to the right. 
The expression data can be accessed using Mouse Species: Mouse, Group: BXD Phenotypes, Type: BXD 
Data Set: Hippocampus Consortium M430v2 (Jun06) RMA and entering the probe set IDs in the Get Any 
search option. 
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Figure 4. Overview of Search Results page. Panel A indicates actions and panel B shows 
indexed search results. Number of records that match search term are shown in the Details 
and Links section at the top of the page. Note that  this page was generated using the  
Mouse (Species), BXD (Group) Phenotypes (Type) BXD Published Phenotypes Data Set 
and entering the wild card character (*) using the Get Any option. Summarized information 
for each trait varies based on data set type but, in general, Record ID gives a unique 
identifier for each data set, (e.g. a number for phenotype data sets and a probe set identifier 
for expression data sets), Max LRS and MAX LRS Location Chr and MB give the 
maximum association score for each trait, and associated peak chromosome and megabase 
position, respectively. Add gives the additive allele effect, which is the estimated effect on 
trait expression associated with inheritance of the maternal or paternal allele. Positive or 
negative values indicate higher or lower expression associated with inheritance of the 
paternal or maternal allele, respectively. From the Search Results page additional 
information about individual traits can be accessed by clicking the Record ID.  Multiple traits 
can be selected (or deselected) using the actions options Select, Deselect, and Invert. 
Selected traits can be added to a Trait Collection for further analysis using the Add option. 
The red question marks are links to additional information about column headings. 	
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Figure 5. Overview of the Trait Collection page. Panel A shows the actions tools menu with 
each action or tool represented by a clickable icon. Panel B shows the indexed search results. 
Note that additional columns of data are shown for traits in a collection compared to traits in the 
Search Results page, including Dataset, Symbol, Description, Location, Mean, and N 
Cases. The Dataset and Description column provide information about which data set the trait 
originated from and details about the trait itself.  As multiple different types of data can be added 
to the same Group collection it is useful to keep track of which data set the trait originated from, 
especially if exploring the expression oft he same gene across tissue types. For phenotype data 
sets, detailed descriptions are provided about trait measurement and for gene expression data 
sets, the full gene name is given along with information about the probe set used to measure the 
expression of that gene. The Symbol column gives the gene symbol for expression data sets 
and an abbreviated name for phenotypes. Location and Mean give the location of the gene for 
expression data sets and average trait expression, respectively. N Cases shows the number of 
individuals that were included in the trait measurement. The red question marks are links to 
additional information about column headings. 
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Figure 6. Layout of Trait Data and Analysis page. Users can explore individual traits in detail in the 
Trait Data and Analysis page. In the Details and Links track, a full description of the trait and 
associated actions and tools are shown. Actions and tools vary slightly depending on whether the trait 
is from a phenotype (A) or gene expression (B) Data Set. The results in B can be generated by 
selecting Mouse (Species), BXD (Group), Hippocampus mRNA (Type), Hippocampus Consortium 
M430v2 (Jun06) RMA (Data Set) and entering the gene symbol “Bdnf“ using the Get Any option. 
Multiple links to outside resources (shown as Resource Links) are provided for gene expression data 
in addition to the GeneNetwork actions and tools Add, Find, Verify, GeneWiki, SNPs, RNA-seq, and 
Probes. Both traits have a common set of tools shown in Panel C as the Basic Statistics, Calculate, 
Correlations, and Mapping Tools tracks. Each track gives the user options to graph the trait 
distribution, correlate expression of the trait with all other traits in a Data Set from the same Group, or 
perform QTL mapping for the trait, respectively. Actual trait values are shown in the Review and Edit 
Data track. 
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Figure 7. Exploring the function of Rb1. An unusual use of the term addiction in NCBI GeneRIF lead to 
the inclusion of Rb1 in our search for addiction related genes whose expression is modulated by a strong 
cis eQTL. 
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Figure 8. Probe set quality control.  The RNA-seq button performs alignment of a probe set 
sequence against the appropriate reference genome using UCSC Genome Browser’s BLAST-like 
alignment tool (BLAT). The results are shown for probe set 1450486_a_at in the top panel. The 
SCORE is a function of the size and match. For large sequences a perfect score is 255. START, 
END and QSIZE provide information about the size in base pairs of the query sequence. 
IDENTITY provides information about the match with 100% indicating a perfect match to the 
reference C57BL/6J genome. The location and span of the match are given by CHRO 
(chromosome) STRAND, START, END, and SPAN. Note that both the probe set and the 11 
perfect match probes that comprise the probe set are shown and that the best match for the 
individual probes and entire probe set is on the positive strand on Chr 2 around 181.45 Mb. 
Clicking the browser link for the best match directs to a graphical display of the probe set 
alignment, shown in the bottom panel. The genome browser display can be cluttered fort he 
uninitiated. The basic layout is a display of several different Tracks of information. These tracks 
can be modified by scrolling down to the track tables at the bottom of the page. The display in the 
above panel was generated by selecting the hide option for all tracks EXCEPT the Mapping and 
Sequencing, Genes and Gene Prediction, and the DBA/2J Sequence and Structural 
Variation tracks. The position of all 11 probes and the composite probe set are shown in the 
bottom panel in black with the corresponding IDs shown to the left. The arrowheads designate the 
alignment oft he probe set on the positive (or sense) strand.  The targeted gene (Oprl1) is shown 
below and indicates that the probe set is designed to target the 3’ UTR according to the UCSC 
gene model. The location of sequence variants in the DBA/2J strain relative tot he C57BL/6J 
reference genome are shown in the last two tracks (D2 Indels and D2 SNPs). Note probes 299709 
and 452573 overlap a DBA/2J SNP. 
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Figure 9. Impact of variants overlapping probe sets in microarray data sets. SNPs overlapping Oprl1 
probeset 1450486_a_at (perfect match or PM probes 299709 and 452573) lead to expression 
measurements that are higher in BXD strains that have inherited the B allele and lower in strains that 
have inherited the D allele. The QTL Heatmap reveals a strong eQTL with higher expression associated 
with inheritance of the B allele at the Oprl1 locus (blue) only for the probes that overlap SNPs. The 
arrowhead indicates the genomic position of the probes. No other probes demonstrate a strong 
association between inheritance of alleles at this locus and gene expression. This analysis reveals that 
the strong cis eQTL detected for Oprl1 is actually the result of a technical artifact resulting from sequence 
variants that disrupt the hybridization of probes to their target RNA sequence in strains other than the 
reference B6 strain (in this case the D2 strain). 
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Figure 10. Top cis modulated genes associated with addiction  
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Figure 11. Exploring covariation. The matrix function allows users to investigate covariation between 
genes (or probe sets) in the Trait Collection. To display the gene symbols along with the probe set IDs, 
use the Short Labels button to redraw the correlation matrix. The matrix displays the correlation for each 
pair of genes (or probe sets) with the spearman correlation coefficient shown to the right of the diagonal 
and the Pearson Correlation Coefficient shown to the left (the diagonal is indicated by grey shading and 
would normally be represented as a 1, or the correlation of each probe set with itself). Scatterplots can be 
generated by clicking the correlation in the matrix. The scatterplot can be customized by selecting the 
Show Options icon, adjusting the settings, and replotting. 
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Figure 12. Principal component analysis (PCA). As part of the matrix tool, a PCA is performed on the 
selected traits. The Scree Plot (left panel) plots each principal component (PC) based on the amount of 
variance each PC or factor explains. The Factor Loadings Plot displays the loading (the correlation) 
between each treat (the measured variable) and the factor or PC (latent variable). Each PC can be treated 
as a trait. If selected the same basic functions and tools for individual trait analysis can be used for the 
PC. QTL mapping is shown for PC1 in the top right panel. Interval mapping does not suggest strong 
genetic control originating from a single locus for PC1.  
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Figure 13. Creating networks and analysis of biological enrichment. From the Trait Collection a 
network graph depicting relations between gene set members can be constructed using the Graph tool. 
Display and correlation threshold can be adjusted using the Network Graph interface. Each node represents 
a gene (probe set) and the edge indicates the correlation (green for negative correlations and red for positive 
correlations). In this case the network shown in A was given a threshold of r = |0.3| as this represents a 
significant correlation (p < -0.01) in this data set. Based on the network, a subset of genes (shown in the 
yellow panel in B) can be selected for enrichment analysis. Select the subset in the Trait Collection and 
select the Gene Set tool. Enrichment analysis is shown in the background (C), with significant (adjusted p-
value or AdjP < 0.05) enrichment of biological function (based on GO annotations) shown in red. 
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Figure 14. Correlation table and correlation scatter plot. (A) The Correlation Table displays 
the results of a correlation analysis between a trait or data of interest and other traits collected 
from the same cohort. In this case, the correlation analysis is between the demographic age data 
and gene expression in the liver. (B) Individual scatter plots can be displayed by clicking on 
correlation values found in the Sample r column. This example shows a significant negative 
correlation between the expression of a mitochondrial ribosomal protein gene, MRPL9, and age. 
(C) Users can select transcripts in the table by setting the correlation criteria using AND/OR 
operators. 
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Figure 15. Biological enrichment and network analysis. Gene lists can be sent directly from gene network 
to other external websites for (A) Gene Ontology, and (B) functional network analysis.  
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Figure 16. Manhattan Plots. Basic genetic association test is performed within GeneNetwork using 
PLINK and result is displayed as a standard Manhattan plot. Comparing between the GWAS results 
for the (top) CYP2C8 enzyme activity (Record ID 10015), and (bottom) expression of CYP2C8 gene in 
liver (GSE9588 Human Liver Normal (Mar11) Both Sexes: 10033668843), we find no common genetic 
modulator of the two related traits. 

	
  


